
BE 159 Spring 2014
Homework #1

Due at the start of lecture, April 22, 2014.

Problem 1.1 (Properties of Turing patterns, 25 pts).
We quickly recall results from our first class, since several people were absent. Let u(x, t) and v(x, t)
be the concentrations of two morphogens at spacial position x and time t. Let fu(u, v) be the net rate
of production of species u by chemical reaction, with fv(u, v) similarly defined for species v. Let Du

be the diffusion coefficient for species u and Dv be the diffusion coefficient for species v. The reaction
diffusion equations are then

∂u

∂t
= Du∇2u+ fu(u, v) (1.1)

∂v

∂t
= Dv∇2v + fv(u, v). (1.2)

Let u = u0, v = v0 be a homogeneous steady state, i.e., fu(u0, v0) = fv(u0, v0) = 0. Finally, we define

fu,u =
∂fu
∂u

∣∣∣∣
u0,v0

(1.3)

fu,v =
∂fu
∂v

∣∣∣∣
u0,v0

, (1.4)

with fv,u and fv,v similarly defined. In class, we showed that if we make a small perturbation δu, δv
from the homogeneous steady state u0, v0, we get the following linear system of equations for periodic
of infinite boundary conditions.

s

(
δu
δv

)
= L ·

(
δu
δv

)
=

(
−k2Du + fu,u fu,v

fv,u −k2Dv + fv,v

)
·
(
δu
δv

)
. (1.5)

Here k (with k2 ≡ k · k) is the vector of wave numbers of the growing perturbation. I.e., this is the
wave number of the emergent pattern in the concentration profile. The solution to this system is(

δu
δv

)
=

(
δu0
δv0

)
est+ik·x. (1.6)

The values of s are the eigenvalues of the matrix L, and δu0 and δv0 are spacial functions dependent
on the initial conditions. The homogeneous steady state is stable if the real part of s is nonpositive.

a) Show that a necessary condition for linear stability of a homogeneous steady state in the absence
of diffusion is that at least one of fu,u and fv,v is negative.

b) Show that at a stable homogeneous steady state in the absence of diffusion, a necessary condition
for linear instability in the presence of diffusion is that exactly one of fu,u and fv,v is negative.
Remember, when the system of equations is unstable, we get patterns that might be relevant to
morphogenesis. Why is it physically relevant to consider only stable homogeneous steady states
in the absence of diffusion?
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c) Assuming that fv,v is the negative one, show that at a Turing bifurcation (i.e., at the onset
of instability: if we were to continuously adjust parameters such as reaction rate constants of
diffusivities until the homogeneous steady state just becomes unstable), the characteristic length
of the emerging pattern from the homogeneous steady state scales like

λ−2 ∼ λ−2u − λ−2v ,

where λu ≡
√
Du/fu,u and λv ≡

√
Dy/(−fv,v). Hint: This length scale corresponds to the wave

number k for which the eigenvalue s is maximal.

d) Show that λv > λu is a necessary condition for an unstable homogeneous steady state. Comment
on the physical implications of these results. It is often said that Turing patterns result from
“local activation with long ranged inhibition.” How do your mathematical results relate to that
statement? What must the relative magnitudes of the diffusion coefficients be in order to get
spontaneous patterns?

Problem 1.2 (The ASDM model (25 pts + 10 pts extra credit)).
In this problem, we will investigate Turing patterns for the activator substrate depletion model
(ASDM) in one dimension. In their full form, the equations for the ASDM model are

∂a

∂t
= Da

∂2a

∂x2
+ ρa

a2s

1 + κaa2
− µaa+ σa, (1.7)

∂s

∂t
= Ds

∂2s

∂x2
− ρs

a2s

1 + κaa2
+ σs, (1.8)

where a is the concentration of the “activator” and s is the concentration of the “substrate.” Note the
single spatial derivative on the diffusion term; this is a result of confining ourselves to one dimension.

a) Describe in words the physical meaning of each term in the reaction-diffusion equations for the
ASDM. Draw a diagram similar to that of Figure 1e of the Howard, et al. paper for the ASDM.
How does the substrate act as an “inhibitor”?

b) Show that for κa = 0 and σa = 0, we can non-dimensionalize the equations to read

∂a

∂t
= d

∂2a

∂x2
+ a2s− a, (1.9)

∂s

∂t
=
∂2s

∂x2
+ µ(1− a2s), (1.10)

where all variables are now dimensionless. Take special note of how d relates to Da and Ds.
This leaves only two parameters to consider, d and µ.

c) Show that the ASDM model has a unique homogeneous steady state of a0 = s0 = 1.

d) We will only consider µ > 1. What must the value of d be (in terms of µ) to get spontaneous
patterns from the homogeneous steady state for the ASDM model?

e) (10 pts extra credit) This part takes more effort than 10 points-worth. However, most of that
effort is in numerically solving the reaction-diffusion equations. This will come up in a future
homework, and putting that effort in now might be worth your time.
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Consider a periodic domain x ∈ [0, 6π). Start with the homogeneous steady state and
numerically solve equations (1.9) and (1.10). Plot the steady state profiles you get for various
values of µ and da. Only include those that give patterns.

Problem 1.3 (Toy gap gene profiles and mutual information (30 pts)).
This problem was inspired by some of the discussion in the Ph.D. thesis of Julien Dubuis, Princeton
University, 2012. For this problem, as in the Dubuis, et al. paper, we will assume

P (g|x) ≈ 1√
2πσ2g

exp

{
−(g − ḡ(x))2

2σ2g

}
. (1.11)

We will assume σg is constant (not a function of x), but ḡ = ḡ(x). Finally, as in the Dubuis, et al.
paper, we will take Px(x) to be uniform, i.e., Px = 1.

a)

c)

b)

d)

Figure 1: Figure adapted from the Ph.D. thesis of J. Dubuis, Princeton University, 2012. Each
figure represents a gene expression profile. Lines represent ḡ(x) and the shaded areas represent
ḡ(x)± σg, where σg is a constant.

a) Compute the mutual information between normalized position x and normalized level of gene
expression level g for the profile given in Fig. 1a in the limit of σg = 0. Is Ig→x for the case
where σg = 0 an underestimate of overestimate of the mutual information when σg > 0? Hint:
When σg = 0, g becomes a discrete variable.
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b) Show that in the limit of low gene expression noise (small but nonzero σg), the mutual informa-
tion for the expression profile in Fig. 1b is approximately

Ig→x ≈ −
1

2
log2

(
2πeσ2g

)
. (1.12)

Is this approximation an overestimate or an underestimate of the mutual information? Hints:
The position x must strictly follow 0 ≤ x ≤ 1, but g does not have to be between zero and one,
since only ḡ goes from zero to one. Let’s say gmin ≤ g ≤ gmax. Because P (g|x) is Gaussian,
P (g|x) is negligible for |g| � ḡ, so there is little error introduced by performing integrals with
infinite bounds. In other words,

Ig→x =

∫ 1

0
dx

∫ gmax

gmin

dg Px(x)P (g|x) log2
P (g|x)

Pg(g)

≈
∫ 1

0
dx

∫ ∞
−∞

dg Px(x)P (g|x) log2
P (g|x)

Pg(g)
. (1.13)

Also, remember some identities for Gaussian integrals.∫ ∞
−∞

du e−u
2

=
√
π, (1.14)

∫ ∞
−∞

duu2e−u
2

=

√
π

2
. (1.15)

c) Compute the mutual information between {g1, g2} and x for the profiles shown in Figures 1c
and d in the limit where σg1 = σg2 = 0.

d) In summary, what do the results of parts (a), (b), and (c) say about “design principles” for
informative expression profiles?

Problem 1.4 (Mutual information from Hunchback profiles (20 pts)).
This problem is inspired by problem 137 of Bialek, Biophysics: Searching for Principles, Princeton
University Press, 2012. In this problem we will investigate how the mutual information Ig→x is calcu-
lated from real data. We will do this for the profile of a single gap gene, Hunchback. On the website
of Bialek’s book, he made measurements of the Hunchback profile from 20 embryos available. (Note
that these are not the same measured profiles from the Dubuis paper.) These can be downloaded here:
http://be159.caltech.edu/2014/handouts/hb.csv. Each column gives the normalized profile of a
single embryo. The data are evenly spaced, going from normalized position x = 0 to x = 1.

Your task is to use these data to compute the mutual information content between the gene
expression level of Hunchback, g, and the position along the anterior-posterior axis in the embryo, x.
As in the paper, use only the middle 80% of the profile in your analysis. We will not carry out the
more sophisticated analysis used in the Dubuis papers, but will make the following approximations.

i) We assume that at each position x, the gene expression level is Gaussian. I.e.,

P (g|x) =
1√

2πσ2g

exp

{
−(g − ḡ(x))2

2(σg(x))2

}
, (1.16)
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where ḡ(x) and σg(x) are computed directly from the experimental data.

ii) We assume the the data are of sufficient quality that both ḡ(x) and σg(x) vary smoothly with x
such that we can naively use numerical quadrature as if the data accurately represent continuous
functions.

We will not do further analysis to get an error bar on our mutual information, as done in the paper.

Compute Ig→x from the data you downloaded. How does it compare with the value reported in
the paper? Comment on any discrepancies.
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