
BE 159 Spring 2014
Provisional Homework #2

Due at the start of lecture, May 8, 2014.

Problem 2.1 (Independence of the onset of Notch activity on trans-Delta (35 pts)).
Reproduce Fig. 3h on the Sprinzak, et al. paper by numerically solving the appropriate system
of ODEs. When you write down the system of ODEs, indicate the meaning of each term and any
approximations that were made in deriving the ODEs. Vary parameters to investigate the robustness of
theDplate-independence of onset or reporter fluorescence. Hint : Look at Table S3 in the supplementary
information for equations and parameter values to set up your calculation.

Problem 2.2 (Dynamics of a cis-trans Delta-Notch system (35 pts)).
Consider two connected cells the have both cis and trans Delta-Notch signaling described by the first
two equations in Box 1 of the Sprinzak, et al. paper. We assume that the rate of production of Notch
(βN ) is the same constant value in both cells. The production rate of Delta, βD may be different in
the two cells. For parts (a) through (d), assume the β’s and κ are constants.

a) Show that the equations can be nondimensionalized to be written as

dn1
dt

= β̃N − n1 − κd1n1 − d2n1 (2.1)

dn2
dt

= β̃N − n2 − κd2n2 − d1n2 (2.2)

dd1
dt

= β̃
(1)
D − d1 − κd1n1 − d1n2 (2.3)

dd2
dt

= β̃
(2)
D − d2 − κd2n2 − d2n1. (2.4)

Going forward, we will drop all tildes and take the variables to be dimensionless.

b) Show that there exists a unique steady state for these equations. I.e., show that there is a unique
{n1, n2, d1, d2} that such that all of the time derivatives in equations (2.1) through (2.4) vanish.
(This might be challenging. If you are stuck, take the uniqueness of the steady state as given,
and proceed.) Explain why it is important to know that the steady state is unique.

c) Numerically compute the steady state and use it to recreate Figs. 4b Sprinzak, et al. paper.
Check Table S3 for parameter values.

d) It can be shown that the steady state is linearly stable if the β’s are constants. Showing this is
challenging and perhaps a bit grungy, so we will now treat the special case of a homogeneous
steady state.

i) First, show that a homogeneous steady state only arises when β
(1)
D = β

(2)
D ≡ βD.

ii) Prove that the homogeneous steady state (n1 = n2 = n0, d1 = d2 = d0) is always linearly
stable. Hint: You can analytically determine the eigenvalues of the linear stability matrix,
but that may not be necessary. You might remember that the following statements are
equivalent.
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1) A real matrix A has the property xT · A · x > 0 for all nonzero x. (Such a matrix A is
termed positive definite.)

2) A has all positive eigenvalues.

3) The determinants of all upper left submatricies of A are positive.

If you want to use these properties, it may help to remember a property of the determinant
of a block matrix composed of square matrices A, B, C, and D.

det

(
A B
C D

)
= det(A · D− B · C), provided C · D = D · C. (2.5)

e) Based on the Sprinzak paper, propose an adjustment to the production rate of Delta, βD, that
would result in the homogeneous state being unstable. Justify your proposal and explain what
it means physically. If you are feeling ambitious and curious, analyze the new system, solve the
two-cell model numerically, and explore the dynamics. (You do not have to do that last bit, but
it might be a nice learning experience.)

Problem 2.3 (A simple fold change detector (30 pts)).
As we discussed in class, the Wnt/β-catenin signaling pathway results in a fold change in β-catenin
corresponding to that of the Wnt signal. Since β-catenin ultimately enters the nucleus and regulates
gene expression, it is important that there also be a fold-change readout of β-catenin levels. Goentoro
and Kirschner mention a simple motif for gene regulation that gives such a fold-change response, citing
the companion paper Goentoro, et al., Mol. Cell, 36, 894–899, 2009. The motif is shown in Fig. 1.
In this motif, transcriptional regulator X (which could be β-catenin) activates expression of Z. X also
activates expression of Y, which represses expression of Z.

X Y Z

Figure 1: A schematic of a feed forward loop that exhibits a fold change response. This motif is
referred to as the incoherent type-1 feedforward loop (I1-FFL).

Because there Y and Z have no effect on X, we can think of X as an input. We will assume that it
is somehow set and maintained at a constant level, e.g., as a constantly-produced signaling molecule
from a neighboring cell. We are interested in the response of Z as a result of an increase in X. Assume
that Y and Z have inherent degradation rates α1 and α2, respectively. Those of you who took BE/APh
161 can derive the resulting differential equations for the dynamics of X, Y, and Z. In lieu of deriving
them, I write them here.

dY

dt
= βY

1 + f X
K1

1 + X
K1

− α1Y, (2.6)

dZ

dt
= β0

X
K1

1 + X
K1

+ Y
K2

+ XY
K3

− α2Z, (2.7)

where the K’s, α’s, and β’s are positive constants. We will investigate the dynamics of this system as
the concentration of X is suddenly raise from X0 to a concentration of X = FX0, where F is the fold
change in concentration of X.
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a) Give an intuitive description of the physical basis for each of the terms in equations (2.6) and
(2.7). If you can (e.g., if you took BE/APh 161 last term and pull out your lecture notes from
January 27), you can derive the expressions to help give you a clearer meaning if you are having
trouble explaining them with words.

b) Show that when activation of Y by X and repression of Z by Y are very strong, the equations
reduce to

dY

dt
≈ β1X − α1Y (2.8)

dZ

dt
≈ β2

X

Y
− α2Z. (2.9)

How are β1 and β2 related to the other constants we have already defined?

c) Nondimensionalize the equations, defining y as the dimensionless version of Y and z as the
dimensionless version of Z. You should find that

dy

dt
= F − y (2.10)

dz

dt
=

1

r

(
F

y
− z

)
, (2.11)

where t is now a dimensionless time. Note that these equations demonstrate that the dynamics
depend on a single parameter, r, and further that the steady state is independent of r.

d) Imagine we have F = 1 and the system has relaxed to a steady state. We then immediately
change F . (We will simply call the changed value F , or the fold change in X.) Solve for y(t).
How does y depend on F at steady state? How does Y depend on X at steady state?

e) Solve for z(t) for the case there r = 1. Solve for z(t) numerically for r 6= 1. Plot z(t) for various
values of r.

f) Based on your results, describe how this motif is a fold change detector.

Problem 2.4 (Simulations of Delta-Notch signaling on a hexagonal lattice (extra credit)).
In coming days, I will post some code that you can use to do simulations of Delta-Notch signaling on
a hexagonal lattice, similar to what is seen in developmental systems, e.g., in Drosophila development.
For extra credit, you can play with the simulation to investigate the patterning dynamics resulting
from Delta-Notch-based regulation of gene expression.
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