
BE 159 Spring 2015
Homework #3

Due at the start of lecture, February 12, 2015

Problem 1 (A simple genetic oscillator with coupling).
This problem was inspired by Julian Lewis’s 2003 paper entitled “Autoinhibition with Transcriptional
Delay: A Simple Mechanism for the Zebrafish Somitogenesis Oscillator.” In our discussion of the
Soroldoni, et al. paper and in the associated lecture, we did not discuss how the genetic oscillator
may work, opting instead to discuss the (very important) Delta-Notch pathway for signaling between
neighboring cells. It has been postulated that the oscillations in the zebrafish presomitic mesoderm
come from a very simple genetic circuit. In particular, two hairy/E(spl)-related (her) genes, her1
and her7, show oscillations. Interestingly, the protein product of these genes inhibit the expression
of the genes themselves. So, a simple genetic circuit arises, in which a her gene is autoinhibited.
Furthermore, active Notch protein represses expression of her genes. In this problem, we will model
the core oscillator made up of the autoinhibitory her circuit (show in in black in Fig. 1) and the
coupling of oscillators in neighboring cells by Delta-Notch signaling.
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Figure 1: Self-regulation of her genes. Her protein represses transcription of her mRNA.

In our analysis, we will neglect the multi-step process of Delta-Notch signaling and the ensuing
repression of expression of her (depicted in gray in Fig. 1) and instead model it as direct repression of
her expression in a cell due to Delta in its neighbor (depicted in red in Fig. 1). Most cells in the PSM
have many neighbors, all of which contribute to the dynamics, but we will consider only two cells for
illustration and for simplicity.

a) As usual, we will describe the dynamics of this circuit with differential equations. Let m1 be
the number of her mRNA molecules in cell 1, and let p1 be the number of Her protein molecules
in cell 1. The variables m2 and p2 are similarly defined. Explain in words why the following
differential equations are reasonable choices to model the genetic circuit in Fig. 1.

dp1
dt

= βpm1 − αpp1, (1)

dm1

dt
= βm f(p1)g(p2)− αmm1, (2)
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dp2
dt

= βpm2 − αpp2, (3)

dm2

dt
= βm f(p2)g(p1)− αmm2, (4)

where the Greek parameters are all positive constants and f(p) and g(p) are arbitrary dimen-
sionless decreasing functions.

b) We will first consider a single her oscillator alone with no coupling to neighboring cells; i.e., we
take g(p) = constant. Prove that this system cannot have oscillations, regardless of what f(p)
is. Hint : You can use a consequence of the Bendixson-Dulac theorem, which states that the
dynamical system

dx

dt
= P (x, y) (5)

dy

dt
= Q(x, y) (6)

has no oscillatory solutions if the quantity

∂P

∂x
+
∂Q

∂y
(7)

always has the same sign.

c) The repression of expression of her1 is accomplished by a dimer of Her proteins. Given this,
why might the following function be a reasonable choice for f(p)?

f(p) =
k2c

k2c + p2
. (8)

d) As you may have seen if you did the supplementary reading for the Soroldoni paper, delay of
regulation by genetic circuits can play a major role in the transmission of signals from one cell to
the next. Naturally, they can also play a role in the timing of gene regulation within individual
cells. It stands to reason that the amount of mRNA does not immediately affect the rate of
production of protein. The mRNA must first be transported out of the nucleus and then be
processed for translation. So, we assign a time delay τp to this process. Similarly, the protein
cannot immediately regulate expression of the mRNA, as it must enter the nucleus and bind
to the appropriate operator. So, we assign a time delay τm to this process. Finally, there is a
time delay τd associated with her repression due to Delta-Notch signaling. For simplicity, we
will take τp ≈ 0, thereby only considering time delays in repression. Because it is of interest in
analysis of coupling, we will also assume that τm for two different cells need not be equal. We
therefore have a system of delayed differential equations,

dp1(t)

dt
= βpm1(t)− αpp1(t), (9)

dm1(t)

dt
= βm f(p1(t− τm,1))g(p2(t− τd))− αmm1(t), (10)

dp2(t)

dt
= βpm2(t)− αpp2(t), (11)
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dm2(t)

dt
= βm f(p2(t− τm,2))g(p1(t− τd))− αmm2, (12)

where the time dependence on each variable is now explicit. Going forward, we will use

g(p) =
kt

kt + p
. (13)

Nondimensionalize equations (9) through (12), using equation (8) for f(p) and equation (13) for
g(p), to get

1

γp

dp̃1

dt̃
= β m̃1(t̃)− p̃1(t̃), (14)

1

γm

dm̃1

dt̃
=

1(
1 +

(
p̃1(t̃− 1)

)2) (
1 + κp̃2(t̃− τ)

) − m̃1(t̃), (15)

1

γp

dp̃2

dt̃
= β m̃2(t̃)− p̃2(t̃), (16)

1

γm

dm̃2

dt̃
=

1(
1 +

(
p̃2(t̃− τ12)

)2) (
1 + κp̃1(t̃− τ)

) − m̃2(t̃), (17)

where γp, γm, β, τ , and τ12 are dimensionless constants. Be sure to write expressions for these
constants. Give a physical meaning for γp and γm. Note that we have reduced the number of
parameters from nine to six. Henceforth, as you are working through the problem, you can drop
the tildes for notational convenience.

e) We have now conveniently nondimensionalized the governing equations, and we return for a
moment to analyze the case of a single oscillator (κ = 0). If γp and γm are very large, the left
hand sides of the dimensionless dynamical equations are close to zero. Thus, if there are two
solutions for the steady states of equations (14) and (15), the system can oscillate between the
two steady states. Show that two steady states exist for β > 2, but not otherwise. Hint : When
working out the steady states, consider p̃(t) = p̃b and p̃(t− 1) = p̃a, with similar definitions for
m̃a and m̃b.

f) We have demonstrated that with time delay, we can get oscillations from a self-repressing gene.
In fact, the time delay is crucial for the oscillation. Now, let’s see the oscillations! Numerically
solve equations (14) and (15) for various values of the parameters γp, γm, and β. For simplicity,
assume γp = γm. For your initial conditions, assume that mRNA and protein are both absent
and then her1 is suddenly available for transcription at time t = 0. Plot your results and
comment on them. In particular, what must be true of the magnitude of γm and γp in order to
get oscillations, and what does this mean physically? Hint: You do not need to do any fancy
integration techniques for these DDEs. You can just use simple Euler time stepping. I wrote a
Python script to do this, and it appears on page 5 of this problem set. You can use it, or use it
as a basis for your own code in whatever language you like.

g) We will now investigate how coupling serves to bring the oscillators into synchrony. We will
consider τ12 6= 1, which means that the oscillators in the respective cells have inherently different
periods, so they should be out of phase without coupling. We will numerically solve equations
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(14) through (17) with nonzero κ. For this, we will take γp = γm = 20, β = 3, κ = 1, and
τ = 1.25. What do the latter two choices mean physically?

For your initial conditions, assume both cells are completely absent of her mRNA and protein
and the her gene suddenly become transcriptionally active at time t = 0. Investigate how
coupling brings the oscillators into phase by numerically integrating equations (14) through (17)
for various values of τ12.
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1 from __future__ import division

import numpy as np

3 import matplotlib.pyplot as plt

import seaborn as sns

5 sns.set()

7 # Useful functions for integration

def f(p):

9 return 1.0 / (1.0 + p**2)

11 def dp_dt(m, p, gamma_p , beta):

return gamma_p * (beta * m - p)

13

def dm_dt(m, p, gamma_m):

15 return gamma_m * (f(p) - m)

17 # Function to perform solution

def solve_her_one_oscillator(

19 gamma_p =20.0, gamma_m =20.0 , beta =3.0, dt=0.001 , t_stop =30.0):

# Number of indices to go back for a time unit (useful for delays)

21 i_time = int (1.0 / dt)

23 # Time points (start -1 time unit so we can handle delays)

t = np.linspace (-1.0, t_stop , (1.0 + t_stop) / dt)

25

# Initialize output arrays

27 m = np.zeros_like(t)

p = np.zeros_like(t)

29

# Do Euler stepping

31 for i in range(i_time , len(t) -1):

m[i+1] = m[i] + dt * dm_dt(m[i], p[i - i_time], gamma_m)

33 p[i+1] = p[i] + dt * dp_dt(m[i], p[i], gamma_p , beta)

35 return t, m, p

37 # Run the calculations for small and large gamma

t, m_small , p_small = solve_her_one_oscillator(gamma_p =2.0, gamma_m =2.0,

39 t_stop =25.0)

t, m_large , p_large = solve_her_one_oscillator(gamma_p =20.0, gamma_m =20.0,

41 t_stop =25.0)

43 # Plot result and save

fig , ax = plt.subplots(1, 2, figsize =(10 ,3), sharey=True)

45 ax[0]. plot(t, m_small , t, p_small , ’-’)

ax[1]. plot(t, m_large , t, p_large , ’-’)

47 ax[0]. set_xlabel(’dimensionless time’)

ax[1]. set_xlabel(’dimensionless time’)

49 ax[0]. legend ((’$m$’, ’$p$’), loc=’upper right’)

ax[0]. set_xlim ((t.min(), t.max()))

51 ax[1]. set_xlim ((t.min(), t.max()))

ax[0]. margins(y=0.02)

53 ax[0]. set_ylabel(’$m ,\;p$’)
ax[0]. set_title(

55 r’Single oscillator , $\gamma_p = 2$, $\gamma_m = 2$, $\beta = 3$’)
ax[1]. set_title(

57 r’Single oscillator , $\gamma_p = 20$, $\gamma_m = 20$, $\beta = 3$’)
plt.savefig(’single_oscillator.pdf’, bbox_inches=’tight’)

59 plt.close(’all’)

her circuit single oscillator.py
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