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3 Introduction to information theory

Gap genes are morphogens: they are expressed differentially in different cells in a
developing embryo. They give global positioning cues to the developing embryo;
their expression levels are read out to ensure cells have the correct fate in the proper
part of the embryo.

In Drosophila, the major gap genes are hunchback, krüppel, giant, and knirps. The
question addressed in the Dubuis, et al. paper is: How much information about po-
sition in an embryo is contained in the levels of gene expression of theDrosophila gap
genes?

In order to address this question, we need a formal definition of what is meant by
information and how it is measured. In this lecture, we come to this definition. Note
that the notation we use in this lecture is a little esoteric, but is chosen to match the
notation in the Dubuis, et al. paper.

3.1 From desiderata to information

The quantification of information rests of the theory of probability. This makes in-
tuitive sense. Say event i happens with probability Pi. If i is very probable and we
observe it, we haven’t learned much. For example, if we observe that the current
pope is Catholic, we haven’t learned much about popes. But if i is very improbable
and we observe it, we have learned a lot. If we observe a pig flying, we have learned
something new about nature.

To codify this inmathematical terms, wemight think that the information gained
by observing event i should scale like 1/Pi, since more rare events give higher infor-
mation.

Now, say we observe two independent events, i and j. Since they are totally in-
dependent, the information garnered from observing both should be the sum of the
information garnered from observing each. We know that the probability of observ-
ing both is 1/PiPj. But

1
Pi

+
1
Pj

̸= 1
PiPj

. (3.1)

So, our current metric of information does not satisfy this addibility requirement.
However,

log
1
Pi

+ log
1
Pj

= log
1

PiPj
. (3.2)

So, we choose log(1/Pi) = − log Pi as a measure of information. We are free to
choose the base of the logarithm, and it is traditional to choose base 2. The units of
information are then called bits.
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Now, saw we have an ensemble of events. Then the average information we get
from observing a events (i.e., the level of surprise) is

S[Pi] = −
∑

i

Pi log2 Pi. (3.3)

This is called the Shannon information or Shannon entropy. It has its name because
of its relation to the same quantity in statistical thermodynamics. We will not delve
into that in this course.

Let’s look at the Shannon entropy another way. Say we know all of the Pi’s. How
much knowledge do we know about what events wemight observe? If the probability
distribution is flat, not much. Conversely, if it is sharply peaked, we know a lot about
what event we will observe. In the latter case, observing an event does not give us
more information beyond what we already knew from the probabilities. So, S[Pi] is a
measure of ignorance. It tells us how uncertain or unbiased we are ahead of an ob-
servation. This will be crucial for defining how much we learn through observation.
In the context of the gap genes, it will help us quantify how much we learn about
position be observing a gene expression level.

I pause to note thatwe shortcutted ourway into this definition of entropy by using
some logic and the desire that independent events add. A more careful derivation
was done in 1948 by Claude Shannon. He showed that the function we wrote for
the entropy is the only function that satisfies three desiderata about measurements
of ignorance.

1. Entropy is continuous in Pi.

2. If all Pi are equal, entropy is monotonic in n, the number of event we could
observe.

3. Entropy satisfies a composition law; grouping of events does not change the
value of entropy.

The derivation is beautiful, but we will not go into it here.

Finally, let’s look at a quick example. Say we have four possible outcomes. Con-
sider the case where all outcomes are equally likely. We are therefore maximally
ignorant about what we will observe, so the entropy should be large. Let’s compute
it.

S
[
1
4
,
1
4
,
1
4
,
1
4

]
= −4

(
1
4

log2
1
4

)
= 2 bits. (3.4)

Now, let’s say that the first event is more likely. Now, we have some bias.

S
[
1
2
,
1
4
,
1
8
,
1
8

]
= − 1

2
log2

1
2
− 1

4
log2

1
4
− 2

(
1
8

log2
1
8

)
=

7
4
bits. (3.5)

Indeed, the entropy is greater for the uniform distribution.
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3.2 Mutual information

With the definition of entropy in hand, we can move on to the big question at hand
for the gap genes. Say we have two ensembles, X and Y. How much does knowing
Y tell us about X? I.e., how much information about X do we get from knowing Y?

To answer this question, we first need to extend our definitions of probability to
include conditional probability and joint probability. The joint probability, P(x, y), is
the probability of observing both x and y. The conditional probability, P(x | y) is the
probability of observing x given that we have observed y. If Px(x) is the probability of
observing x regardless of whether or not we have observed y, then

P(x, y) = P(y | x)Px(x). (3.6)

We can swap x and y to get

P(x, y) = P(y, x) = P(x | y)Py(y). (3.7)

From this, we can show that

Px(x) =
∑

y

P(x | y)Py(y). (3.8)

This result is derived as
∑

y

P(x, y) =
∑

y

P(x | y)Py(y) =
∑

y

P(y, x) =
∑

y

P(y | x)Px(x)

= Px(x)

[
∑

y

P(y | x)

]
= Px(x), (3.9)

where we have use the fact that the bracketed term is equal to one.

Similarly to how we’ve defined conditional probability, we can define conditional
entropy of X given an event y. Note that we can only talk about entropy of ensembles,
not of events, hence the capital X.

S[P(X | y)] = −
∑

x

P(x | y) log2 P(x | y). (3.10)

The conditional entropy of X given Y is the average of the above, analogously to how
entropy itself is defined.

S[P(X | Y)] = −
∑

y

Py(y)
∑

x

P(x | y) log2 P(x | y). (3.11)

14



Now, we can answer the question of how much information is gained about X
from knowing Y. It is the loss of ignorance, or how much entropy we lost, when we
learned Y. This is called themutual information of X and Y, Iy→x.

Iy→x = S[Px(x)]− S[P(X | Y)]. (3.12)

We can write out the expression for this in terms of the event probabilities.

Iy→x = −
∑

x

Px(x) log2 Px(x) +
∑

y

Py(y)
∑

x

P(x | y) log2 P(x | y)

= −
∑

x

∑

y

Py(x)P(x | y) log2 Px(x) +
∑

x

∑

y

Py(y)P(x | y) log2 P(x | y)

=
∑

x

∑

y

Py(y)P(x | y) log2
P(x | y)
Px(x)

. (3.13)

Going from the first line to the second, we have inserted the expression for Px(x)
given in equation (3.8) and brought the summation symbols to the front of the sum-
mands. Now, using the fact that Py(y)P(x | y) = P(x, y), we can write

Iy→x =
∑

x

∑

y

P(x, y) log2
P(x | y)
Px(x)

=
∑

x

∑

y

P(x, y) log2
P(x, y)

Px(x)Py(y)
. (3.14)

Written this way, we see that x and y are totally interchangeable, so

Iy→x = Ix→y. (3.15)

This is why it is called mutual information.

The most useful for of the mutual information for our purposes (including two
expressions for the interchangeability) is

Iy→x =
∑

x

∑

y

Py(y)P(x | y) log2
P(x | y)
Px(x)

=
∑

x

∑

y

Px(x)P(y | x) log2
P(y | x)
Py(y)

. (3.16)

3.3 Entropy, mutual information, and continuous distributions

So far, we have used only discrete probabilities. What if, e.g., x is a continuous vari-
able and then P(x | y) and Px(x) are continuous distributions. Remember, distribu-
tions have units, the inverse of whatever the units of x are. Looking at the definition
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of entropy and conditional entropy, we are in trouble because we would have to take
the logarithm of a quantity with units. We can’t do that. It is quite difficult to define
entropy in a continuum; that is a whole other subject.

This is not a problem for the mutual information, though. We always take the
log of probability distribution with the same units, so the units cancel. Therefore, in
the mutual information definition, we can just replace the sums with integrals. For
example, if x is continuous and y discrete, we have

Iy→x =
∑

y

∫
dx Py(y)P(x | y) log2

P(x | y)
Px(x)

. (3.17)

3.4 Information in the gap genes

We are now ready to consider how much information the gap genes give about posi-
tion. This is exactly Ig→x, where g is the gene expression level and x is position. As we
have derived, we know this is an appropriate metric for information about x provided
by g.

Ig→x =

∫
dg

∫
dx Pg(g)P(x | g) log2

P(x | g)
Px(x)

=

∫
dg

∫
dx Px(x)P(g | x) log2

P(g | x)
Pg(g)

. (3.18)

The expression on the first line is not very useful because we have no way of mea-
suring P(x | g). However, we can measure P(g | x). We take an image of the embryo
with a gap gene fluorescently labeled. We know the position along the embryo for
each pixel, and we can get the gene expression level (in arbitrary units) by the fluo-
rescence intensity. We do this over and over again and we can construct an empirical
probability distribution of gene expression levels for each position x. This is exactly
P(g | x).

We still have to know Px(x) and Pg(g) to compute the mutual information. First
Px(x) is what we know about position along the embryo before we have learned any-
thing about the gene expression levels. A given cell does not “know” where it is
without the gap gene compass, so it is equally likely to be anywhere in the embryo.
Thus, Px(x) is just a uniform distribution over the length of the embryo. If we use
fractional embryo length as our length metric, Px(x) = 1. Finally, we can compute
Pg(g) using a continuous version of equation (3.8).

Pg(g) =
∫

dx P(g | x)Px(x). (3.19)

So, we did it! We can take experimentalmeasurements and compute the information
that the gap genes can give about position. Of course, if there are multiple genes, say
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4 of them as is the case with the gap genes considered in the Dubuis, et al. paper, we
have to integrate over all of them.

I{g}→x =

∫
dg1 · · ·

∫
dg4

∫
dx Px(x)P({g} | x) log2

P({g} | x)
P{g}({g}) . (3.20)

3.5 Information through a noisy channel

As a final example that is relevant in cell signaling, we will consider information flow
through a channel. We will consider a binary symmetric channel. A signal x comes
through a channel and results in readout y. The value of x can be zero or one, as
can the value of y. The problem is that the channel is noisy. There is a probability f
that the value of y will be different than the value of x. How much information does
knowing y tell us about x?

We write out the probabilities and then compute the mutual information.

P(y = 0 | x = 0) = 1− f (3.21)

P(y = 0 | x = 1) = f (3.22)

P(y = 1 | x = 0) = f (3.23)

P(y = 1 | x = 1) = 1− f. (3.24)

The mutual information is

Ix→y =
∑

x

∑

y

Px(x)P(y | x) log2
P(y | x)
Py(y)

(3.25)

Now, say Px(x) = {1/2, 1/2}. Then,

Py(y) =
∑

x

P(y | x)Px(x) =
1
2
(1− f) +

1
2

f =
1
2
, (3.26)

for both y = 0 and y = 1. Then,

Ix→y =
1
2
(1− f) log2(2(1− f)) +

1
2

f log2(2f)

+
1
2
(1− f) log2(2(1− f)) +

1
2

f log2(2f)

= 1+ f log2 f + (1− f) log2(1− f). (3.27)

So, if f = 0 (meaning there is no noise), we get one bit of information. This makes
sense, knowing y tells us exactly what xwas, and x can only take on two values; hence
one bit. Similarly, if f = 1, y is wrong all the time, so we again can deduce what x is.
We get one bit of information for f = 1 as well. If f = 1/2, we have no idea what x
is given y. In this case, the mutual information evaluates to zero. For intermediate
values of f we get some information between zero and one bit.
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