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7 Delta-Notch signaling

In the previous lecture, we investigated the large-scale effects of coupled genetic
oscillators. In the homework, we will expore a simple model for how genetic oscil-
lations may arise. Today, we will discuss a signaling pathway that enables genetic
oscillations in one cell can be coupled to oscillations in its neighbor. The Delta-
Notch signaling system is responsible for coupling cells in the presomitic mesoderm
in developing zebrafish embryos. We will explore how coupling leads to synchroniza-
tion of oscillation in the homework. Here, we will discuss some of the more generic
features of the Delta-Notch system and introduce techniques for modeling it.

7.1 Molecular biology of the Delta-Notch signaling system

Delta-Notch signaling provides a mechanism for neighboring cells to communicate
with each other. The molecular mechanism is shown in Fig. 10. Notch is a trans-
membrane protein that is the receptor for another transmembrane protein Delta.
When a cell is expressing Notch and its neighbor is expressing Delta, Delta binds
Notch, which results in a conformational change. This enables proteolytic cleav-
age of Notch, resulting in the Notch intracellular domain (Nicd) detaching from the
membrane complex. Nicd acts as a transcription factor. It is a co-activator with Mas-
termind and a co-repressor with hairless, in addition to having other binding partners
that control gene expression.
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Figure 10: Sketch of the molecular details of Delta-Notch signaling. The insides
of neighboring cells are shown in brown and the intercellular space is shown in
light blue. Taken from Bray, Vat. Rev. Mol. Cell Biol., 7, 678-689, 2006.
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Importantly, Nicd represses production of Delta. So, a cell that has a lot of
cleaved Notch will stop producing Delta. Thus, a cell expressing a lot of Delta will
suppress Delta expression in the neighboring cell by activating Notch in the neigh-
bor. A schematic of this process is shown in Fig. 11.
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Figure 11: Schematic of nearest-neighbor cell differentiation by Delta-Notch.
Delta expressed by the bottom cell activates Notch in the top cell. The activated
Notch in the top cell suppresses Delta in the top cell. Because there is no Delta
on the surface of the top cell, Notch is inactive in the bottom cell. Since Notch
is inactive, Delta continues being expressed in the bottom cell.

So, the Delta-Notch system enables a cell to access a cell fate and instruct its
neighbors 7ot to access the same fate.

7.2 Mathematical analysis of the Delta-Notch system

We will develop a simple model to describe the dynamics of the Delta-Notch sig-
naling between two nearest-neighbor cells. Let /; be the number of active Notch
molecules in cell 1 and D, be the number of Delta molecules, with /, and D, simi-
larly defined. We then write the dynamics as

dN;

= = FD2) =7y (7.1)
t

dD

D6 - 70, (7.2
t

dx.

d_2 =F(Dy) — yy V2 (7.3)
t

dD

d_tz = G(Nz) — }’D.Dz. (7.4)
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We have defined y ,,and y ,, to be the respective autodegradation rates of Notch and
Delta. The function F(D) describes how the Delta level in a neighboring cell affects
the Notch level. This function should be monotonically increasing, since more Delta
implies more active Notch. The function G(/V) describes how the level of active
Notch in a cell affects its Delta level. Since Notch represses Delta, this should be
monotonically decreasing.

7.2.1 Nondimensionalization

As usual, we will nondimensionalize these dynamical equations. We define the fol-
lowing, with dimensionless quantities being either lowercase or marked with a tilde.

1= 1t (7.5)
G(V,) = Gog(No/Ny) (7.6)
F(D,) = Fyf(D,/Dy) (7.7)

Ny = Nomy (7.8)
D, = Dyd,, (7.9)

with other variables similarly defined. After substitution and rearrangement, we get

) Fyt

= 2 f(ds) — e (7.10)
0

. Gyt

4 = l; g(m) — YpTd (7.11)
o

. Fyt

n; = jov—f(dl) —VYNTH: (7.12)
0

. Gyt

d, 1; g(ny) — yptdy, (7.13)
o

where the over-dot indicates differentiation by 7. Now, we choose 7 = y and /V,
and D, such thatlim, ., f(d) = 1and g(n = 0) = 1. We further choose Fy = N,/ 7
and Gy = D,/ 7. With these choices, we have

m = fldy) — m (7.14)
dy = v (g(m) — dy) (7.15)
1y = fldy) — m (7.16)
dy = v (g(ny) — dy) (7.17)
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where we are left with a single parameter, v = y /7 4, the ratio of the decay rates
of Delta and Notch.

7.2.2 Homogeneous steady state

We are interested in knowing if these two neighboring cells can differentiate from
each other. We therefore wish to find a homogeneous steady state, n; = n, = 1y and
d = d, = dp, and test its stability. If this homogeneous steady state is unstable, we
expect the cells to be able to differentiate. If it is stable, they cannot spontaneously
differentiate.

To find the steady state, we solve the system of equations with all time derivatives
set to zero. I.e., we wish to solve

fido) — o =0, (718)
g(ny) —doy = 0. (7.19)

The first equation gives ny, = f(dj), so the second equation tells us we must have
g(f(dy)) = do. We will write g(f(x)) as gf(x), where gf(«x) is called the composi-
tion of the functions g and f. Now, f(x) is a monotonically increasing function and
Z(x) is a monotonically decreasing function, so gf(x) is a monotonically decreasing
function. So we have that gf(d)) is monotonically decreasing toward zero while the
function 4(dy) = dj is monotonically increasing from zero. This means that these
two functions cross exactly once, so there exists a unique homogeneous steady state.

7.2.3 Linear stability analysis

We saw linear stability analysis in section 2.5.3. We will perform the same type
of analysis on the Delta-Notch dynamical system. Let 7, d, be the homogeneous
steady state. We take a small perturbation off of this steady state such that

n = ny + om (7.20)
d = do + 0d; (7.21)
n, = ng + On, (7.22)
dy = dy + 6d,, (7.23)

whereu = (0my, 6dy, On,, Od,) is a small perturbation about the homogeneous steady
state. We expand the functions f(4) and g(») to first order in the perturbation.

fldy) = fldo) + [ (do) 6dy + O ((6d,)?) (7.24)
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g(m) = g(no) + g'(no) om + O ((6m)?), (7.25)

and so on. We define f = f'(dy) and gy = g'(n,) for notational convenience. Then,
to linear order in the perturbation, we have

d

d_t 5711 :f(‘)édz — (Sﬂl (7.26)
d
a_ 6111 = VU (g() 6111 — 6d1) (7.27)
d
d
& (Sdz =V (go (Sﬂz — (Sdz) . (7.29)

This can be written in matrix form as

d
A A-u, (7.30)

with

-1 0 0 f
A | V& 0O —-v O
0o -1 f 0
0 Vg 0 2

(7.31)

The sum of the eigenvalues of this matrix is given by the trace and the product of the
eigenvalues is given by the determinant.

trA=f—v—1 (7.32)
detA =v? (fige —1). (7.33)

So, a sufficient condition for having an eigenvalue with positive real part, and the
homogeneous steady state thereby being unstable, is that f; > v + 1. We cannot say
much more without having the functional forms of f(x) and g(x) and/or the numer-
ical values of f; and g.

7.2.4 Linear stability in the v > 1regime
To make more analytical progress, we consider the case where v > 1, which is to

say that the Delta dynamics are much faster than the Notch dynamics. We note that
the terms multiplying v in equations (7.15) and (7.17) must be of order v, since all of
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the variables have been scaled to unity. This means that g(#;) ~ 4; and g(n;) = d,.
With this approximation, we can reduce the dynamical system to two equations.

m = fg(ny) —m (7.34)
We can again perform linear stability analysis, defining now
_ dfg(n)
fg() = dn - (736)
We get
d 67’11 -1 ng 5”1
- = . . 7.37
dr (5712) (fgo -1 on, ( )
The sum of the eigenvalues of this linear stability matrixis 4; + 4, = —2, implying

that at least one of the eigenvalues has a positive real part. The product of the eigen-
values is given by the determinant, or 4,4, = 1 — (fgo)?. Since at least one of the
eigenvalues has a negative real part, we must have 4,4, < 0 to have an instability.
So, we must have (fgy)* > 1, or fgo < —1, since fg, < 0. This tells us that the
composite function fg(x) must be steep.

7.2.5 Cooperativity in the v > 1regime

We will model f(x) and g(x) as Hill functions to gain some more insights into the
requirements for instability.

flx) = P (7.38)
)= 5 (739)
B = e '
Then, we have
[6/ (b + &))"
= . 7.40
We compute the differential of this function for 7 = n, = 1.
e w -

de  (b+ab+ax)?

Thus, we have that fg, can never have a magnitude greater than unity, since the
denominator in this expression is equal to the numerator plus only posivite values.
Therefore, if n; = n, = 1, we cannot have an instability. So, a requirement for
instability of the Delta-Notch system in the limit where Delta dynamics are much
faster than Notch dynamics is that we must have cooperativity, i.e., 7y > 1, n, > 1,
or both.
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