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8 Continuum mechanics: conservation laws

As we move into the mechanics of morphogenesis, we need to develop a mathemat-
ical framework, similar to our use of mass action kinetics in our studies of signaling.
We have already seen some of the results of this analysis in our discussion of Tur-
ing patterns, where we already used some results we will derive for conservation of
mass. We will discuss this more formally now.

8.1 Assumptions about continua

We will be treating cells and tissues as continua, meaning that we do not consider
discrete molecules. When is this a reasonable thing to do? When can we neglect
molecular details?

We can think of an obvious example where it is ok to treat objects as continua.
Let’s say we are engineering a submarine. We want to design its shape and propeller
such that it moves efficiently through water. Do we need to take into account the
molecular details of the water? Definitely not! We only need to think about bulk
properties of the water; it’s density and viscosity (both of which are temperature de-
pendent). We can also define a velocity of water as a continuum as opposed to think-
ing about the trajectories of every molecule. So, clearly there are situations where
the continuum treatment of a fluid is valid.

Similarly, we do not need to know all of the details of the metal of the submarine.
We would again need to know only bulk properties, such as its stiffness and thermal
expansivity. So, we can also treat solids as a continuum.

There are also cases where we cannot use a continuum approximation. For ex-
ample, if we are studying an aquaporin, we might want to analyze the electrostatic
interactions as a water molecule passes through. Clearly here we need to have an
molecular/atomistic description of the system.

So, when can we use a continuum description instead of a discrete one? We will
have a more precise answer for this as we develop the theory in a moment, but for
now,we’ll just say thatweneed plenty of particles so thatwe can average their effects.

8.2 A preliminary: indicial notation

In order to more easily work our way through our treatment of continuum mechan-
ics, we will introduce indicial notation, which is a convenient way to write down
vectors, matrices, differential operators and their respective products. This tech-
nique was invented by Albert Einstein in 1916, and he considered it to be one of his
great accomplishments.
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Before plunging in, I note that we shouldn’t trivialize or fear new notation. To
quote Feynman, “We could, of course, use any notation we want; do not laugh at
notations; invent them, they are powerful. In fact, mathematics is, to a large extent,
invention of better notations.”

The main concept behind indicial notation is a tensor. A tensor is a system of
components organized by one or more indices that transform according to specific
rules under a set of transformations. I.e., tensors are parametrization-independent
objects. The rank of a tensor is the number of indices it has. To help keep things
straight in your mind, you can think of a tensor as a generalization of a scalar (rank 0
tensor), vector (rank 1 tensor) and a matrix (rank 2 tensor).4 That’s a mouthful, and
quite abstract, so it’s better to see how they behave with certain operations.

8.2.1 Contraction

The contraction of a tensor involves summing over like indices. For example, saw
we have two rank 1 tensors, ai and bj. Then, their contraction is

aibi = a1b1 + a2b2 + · · · . (8.1)

It is convention in indicial notation to always sum over like indices. So, if ai and
bj represent vectors in Cartesian three-space, which they usually will in our studies,
they have components like (ax, ay, az). Then, aibj = axbx + ayby + azbz is the vector
dot product. This relates to something you might already be used to seeing.

aibi = a · b. (8.2)

So, contraction of two rank one tensors gives a rank zero tensor. Similarly, we can
contract a rank two tensor with a rank one tensor, which is equivalent to a matrix-
vector dot product.

Aijbj = ci. (8.3)

Since we summed (or contracted) over the index i, the index j remains. It is helpful
to write it out for the case of i, j ∈ {x, y, z}.

Aij =

⎛

⎝
Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎞

⎠ , (8.4)

and bj = (bx, by, bz). Then, we have

ci = Aijbj =

⎛

⎝
Axxbx + Axyby + Axzbz

Ayxbx + Ayyby + Ayzbz

Azxbx + Azyby + Azzbz

⎞

⎠ . (8.5)

4We will not talk about covariant and contravariant tensors in this class, since they are not neces-
sary for what we are studying.
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This is equivalent to A · b in notation you may be more accustomed to. Note that
Aijbi is equivalent to AT · b.

8.2.2 Direct product

Wecan alsomake higher order tensors from lower order ones. For example, aibj gives
a second order tensor.

aibj =

⎛

⎝
axbx axby axbz

aybx ayby aybz

azbx azby azbz

⎞

⎠ . (8.6)

8.2.3 Differential operations

You have probably seen the gradient operator before. In Cartesian coordinates, it is

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (8.7)

In indicial notation, this is ∂i. So, the gradient of a scalar function f is ∂i f , which is
a rank 1 tensor, as we would expect. In more familiar notation, we would write this
as ∇f . The divergence of a vector vi, written familiarly as ∇ · v is ∂ivi. This is a
contraction of the differential operator with the vector. The Laplacian of a scalar,
commonly written as∇2 f or f , is ∂i∂i f .

8.2.4 Trace and matrix multiplication

We can define the trace of a rank 2 tensor as the sum of the diagonal elements.

Aii = Axx + Ayy + Azz. (8.8)

Note that we could multiply matrices and then take the trace. Comparing to familiar
notation,

AijBij = tr(AT · B). (8.9)

In other words, the contracted indices tell us what to sum. Simply matrix multipli-
cation is

AijBjk = A · B. (8.10)
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8.2.5 The Levi-Civita symbol

We represent cross products with the Levi-Civita symbol. This is defined as

ijk =

⎧
⎨

⎩

1 if i jk = xyz, yzx, zxy
−1 if i jk = zyx, yxz, xzy
0 otherwise.

(8.11)

Thus, we can represent the vector cross product as

ijkujvk = u× v. (8.12)

The curl of a vector field is

ijk∂ivj = ∇× v = curl v. (8.13)

8.3 Conservation of mass

Now that we have the mathematical notation in place, we will proceed to derive con-
servation laws for a continuous material. To do this, consider a piece of space within
a material, which we will call a volume element. The volume element has an out-
ward normal vector ni, as shown in Fig. 12. Now, let’s say that this volume element

ni

Figure 12: Drawing of a three-dimensional volume element with outward nor-
mal ni.

hasmaterial in it with a density . Then, the total mass ofmaterial inside the volume
element is

m =

∫
dV , (8.14)

where the integral is over the volume. Now, the time rate of change of mass in the
volumemust be equal to the net flow ofmass into the control volume. Themass flow
rate out of control volume per unit area is ni( vi), where vi is the velocity of material.
So, the rate of change of mass is

∂t

∫
dV = −

∫
dS ni( vi), (8.15)
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where the second integral is over the surface of the control volume.

Now, the divergence theorem, also known as Gauss’s theorem or the Gauss di-
vergence theorem, states that for any closed surface, any continuously differentiable
tensor field Fi satisfies

∫
dV ∂i Fi =

∫
dS ni Fi. (8.16)

This generalizes for higher rank tensor fields. E.g.,
∫

dV ∂j Tij =

∫
dS nj Tij, (8.17)

for a rank 2 tensor. Taking our vector fields as vi, we apply the divergence theorem
to get

∂t

∫
dV = −

∫
dV ∂i( vi). (8.18)

We can take the time derivative inside the integral sign and rearrange to get
∫

dV (∂t + ∂i( vi)) = 0. (8.19)

This must be true for all arbitrary control volumes, which means that the integrand
must be zero, or

∂t + ∂i( vi) = 0. (8.20)

We define the operator

d
dt

≡ ∂t + vi∂i (8.21)

as the material derivative (also known as the substantial derivative), which is the
time derivative in the co-moving frame. The second term in its definition in effect
puts the observer moving along with this control volume in the material. Thus, we
have

d
dt

= − ∂ivi. (8.22)

If does not change, i.e., if the material is incompressible, the result is that the
velocity field is divergenceless, or

∂ivi = 0. (8.23)

This result is called the continuity equation.
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8.4 Conservation of mass for each species

The same analysis applies for the conservation of mass for a given species k. We will
write k as a superscript with the understanding that repeated superscript indices are
not summed over. We start with the analog of equation (8.15). We define k as the
density of species k and vk

i as the velocity of particles of type k, and we have
∫

dV ∂t
k = −

∫
dS ni(

kvk
i ) + net production of k by chemical reaction. (8.24)

I have added the production of k by chemical reaction (in words) to this equation,
since we need to consider this as well. We can write this using the stoichiometric
coefficients for chemical reaction l, k

l , and their respective rates, rl.
∫

dV ∂t
k = −

∫
dS ni(

kvk
i ) +

∫
dV Mk k

l rl, (8.25)

where Mk is the molar mass of species k. The expressions for rl are typically given by
mass action expressions. Now, we can apply the divergence theorem and rearrange,
giving

∂t
k = −∂i(

kvk
i ) + Mk k

l rl. (8.26)

To both sides of this equation, we add ∂i( kvi). The result is

∂t
k + ∂i(

kvi) =
d k

dt
+ k∂ivi = −∂i(

k(vk
i − vi)) + Mk k

l rl. (8.27)

We define the diffusivemass flux by jk
i =

k(vk
i −vi). This is the relativemovement

of species k compared to the center of mass, or barycentricmovement. So we have

d k

dt
= − k∂ivi − ∂i jk

i + Mk k
l rl. (8.28)

We can re-write this equation in terms of the number density (the concentration)
of species k instead of the mass density. It is simple as dividing the entire equation
by the molar mass.

dck

dt
= −ck∂ivi −

1
Mk

∂i jk
i +

k
l rl. (8.29)

It is common to also use the symbol jk
l for the diffusive particle flux, which is the

diffusivemass fluxdivided by themolarmass. This double notation can be confusing,
and we will avoid using it here.

Deriving an expression for the diffusive particle flux is nontrivial, and we will not
do it here. We will take as given Fick’s first law, which states that

jk
i

Mk
= −Dk∂ick, (8.30)
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where Dk is the (strictly positive) diffusion coefficient of species k. Using this ex-
pression, we arrive at the reaction-diffusion-advection equation,

∂tck = −∂i(ckvi) + ∂i(Dk∂ick) + k
l rl. (8.31)

The diffusion coefficient is usually constant, so we get

∂tck = −∂i(ckvi) + Dk∂i∂ick + k
l rl. (8.32)

The first term on the right hand side describes the change in concentration as a result
of being embedded in a moving material (advection). The second term describes
diffusion, and the last describes chemical reaction. These are the same equations that
we encountered in studying Turing patterns, sans the advective term. We see now
that the equation is derived simply by accounting for all of the mass in an arbitrary
volume element.

8.5 Shoring up when we can use continua

From the above, we can see what the criteria are for using continuummechanics. We
have to be able to define volume elements large enough to contain enough particles
such that each volume element has a well defined average and does not experience
large fluctuations. The volume elements must be small enough that we can define
derivatives of these average quantities. So, we need to have a system big enough and
full enough to contain many sufficiently big volume elements.

8.6 General conservation law

Instead of counting mass, let’s count any other conserved quantity that is a property
of the material; let’s call it . If j i is the flux of out of the volume element Then,
we have

∂t

∫
dV = −

∫
dS ni j i, (8.33)

or, upon applying the divergence theorem and considering that the volume element
is arbitrary,

∂t = −∂i j i. (8.34)

This tells us that the local time rate of change of a quantity is given by the divergence
of a flux, an important general result.
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8.7 Conservation of linear momentum

Let’s take = vi, the linear momemtum density. The total linear momentum
of a volume element is

∫
dV vi, so taking = vi means that we are describing

a conservation law for linear momentum. In this case, ∂t( vi) is a rank one tensor,
so the flux must be a rank two tensor. We will denote this flux as ij, the total mo-
mentum flux tensor. The statement of conservation of linear momentum, called
the equation of motion, is

∂t vi = −∂j ij. (8.35)

Now, we can split the total momentum flux tensor into two pieces. First, we have
the momentum flux due to material flowing in and out of the volume element. This
is vivj. The second part of the total momentum flux is all the other stuff, which we
will denote by ij. This is called the stress tensor.

ij = vivj + ij. (8.36)

Therefore, we have

∂t vi = −∂j vivj − ∂j ij. (8.37)

Now, we will apply the chain rule to terms on both sides of this equation.

∂tvi + vi∂t = − vj∂jvi − vi∂j vj − ∂j ij. (8.38)

Rearranging, we get

(∂t + vj∂j)vi = −vi[∂t + ∂j vj]− ∂j ij. (8.39)

The parenthetical termon the left hand side is thematerial derivative. The bracketed
term is zero by conservation of mass, cf. equation (8.20). Thus, we arrive at our
statement of conservation of linear momentum.

dvi

dt
= −∂j ij. (8.40)

8.8 Constitutive relations

This is all fine and good, buy what is ij!? An expression for the stress tensor is called
a constitutive relation. The derivation of the expressions of the constitutive rela-
tions is often nontrivial. Wewill explore constitutive relations in the next lecture and
explore their meanings. For now, we simply state the constitutive relations for a ho-
mogeneous elastic solid and a homogeneous viscous fluid, the two type of materials
we most often encounter.
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8.8.1 Homogeneous elastic solid

The constitutive relation for a homogeneous elastic solid is

ij =
E

1+

(
ij + 1− 2 kk ij

)
, (8.41)

where ij is the Kronecker delta. E is the Young’s modulus, and is the Poisson
ratio. Note that physical constraints (namely, the second law of thermodynamics)
state that we must have E ≥ 0 and −1 ≤ ≤ 1/2. The strain tensor is ij, which
describes how the material has deformed from its equilibrium state. We will discuss
the strain in more depth in the next lecture.

8.8.2 Homogeneous viscous fluid

The constitutive relation for a homogeneous viscous fluid is

ij = 2 vij − p ij, (8.42)

where the symmetric velocity gradient tensor is

vij =
1
2
(∂ivj + ∂jvi) . (8.43)

Here, is the viscosity, and p is the hydrostatic pressure. We will discuss the con-
stitutive relation for this material in much more depth in the next lecture as well.
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