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9 Continuum mechanics: active complex fluids

Last time we derived conservation laws for mass and linear momentum. In both
cases, we showed that the conservation law is of the same form. The time rate of
change of a quantity is given by the divergence of a flux, plus some generation term
for nonconserved quantities. When written in the comoving frame (that is, using
the material derivative), the we can define the flux tensor we need to specify. For
conservation of momentum, this flux tensor is the stress tensor.

dvi

dt
= −∂j ij (9.1)

9.1 Physical interpretation of the stress tensor

The stress tensor describes forces resulting from relative motion of a material. It has
units of force per area, or momentum flux. To see this, note that momentum has
dimension of ML/T. A flux introduces dimension of 1/L2T. Putting it together, the
stress has units of M/LT2, or force per area.

To understand how it describes forces due to relative motion consider for exam-
ple the case where part of the material moves left and another part moves right, we
have a stretching motion. The material pulls in resistance to this motion. The com-
ponent of the stress tensor describing resistance to this mode of relative motion is

xx.

9.2 Constitutive relations for an elastic solid

We first consider a homogeneous elastic solid. The stress tensor is given in terms in
the strain tensor, which we will first characterize.

9.2.1 Elastic strain tensor

We define by xi the position of a piece of the solid in space. We then deform the
solid such that that same piece is now at position x′i. We define the displacement,
ui = x′i − xi. If an object changes shape, then the displacement varies across the
solid. If ui is constant across the solid, the solid is not being deformed; rather, it is
being translated in the direction of ui. However, if ui varies in space, we do have a
deformation. So, the quantity ∂iuj reflects local deformations in the solid.

To investigate themagnitude of deformations, we consider the differential squared
distance between neighboring points in the solid.

dℓ2 = dxi dxi. (9.2)
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If we have a deformation, this distance changes by

dℓ′2 = dx′i dx′i. (9.3)

For small deformations,

dx′i − dx = ui − u′
i ≈ (∂jui)dxj, (9.4)

by the chain rule. Then, we have

dℓ′2 = (dxi + (∂jui)dxj) (dxi + (∂kui)dxk)

= dxi dxi + (∂jui)dxj dxi + (∂kui)dxk dxi + (∂jui)(∂kui)dxj dxk

= dℓ2 + [∂iuj + ∂jui + (∂iuk)(∂juk)] dxi dxj, (9.5)

where in the last line we have renamed indices to collect terms multiplying dxi dxj.
We can write this down as

dℓ′2 − dℓ2 = 2 ij dxi dxj, (9.6)

where we have defined the strain tensor as

ij =
1
2
(∂iuj + ∂jui + (∂iuk)(∂juk)) . (9.7)

The last term in the strain tensor is small for small displacements, so we have, to
linear order in ∂iui,

ij ≈
1
2
(∂iuj + ∂jui). (9.8)

9.2.2 Elastic stress tensor

We have established that the strain describes deformations of the solid. We can de-
rive a relationship between the stress tensor, which describes the forces necessary
to achieve the deformations, using thermodynamic arguments. Instead, we will just
start with Hooke’s law, which is valid for small deformations. As Hooke said, “ut
tensio sic vis,” or the force is proportional to extension. Because the stress tensor is a
rank 2 tensor, as is the strain tensor, to write a linear relationship between the two,
most generally, we need a rank 4 tensor.

ij = Cijkl kl. (9.9)

There are 34 = 81 entries in the tensor Cijkl. This looks really intimidating, but
by symmetry arguments, we can show that the entries are not all independent. For
example, because the strain tensor ij is symmetric, ij = ji. The stress tensor must
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also show this symmetry, so therefore so must Cijkl. This implies that Cijkl = Cjikl =
Cijlk. We will not go through all of the symmetry arguments here, but in the end, we
find that there are only two independent parameters. Generally, it can be shown that
a linear relationship between two rank 2 symmetric tensors that remains invariant
under change of coordinates has the form

ij = kk ij + 2 ij, (9.10)

where the constants and are called the Lamé coefficients. This gives us our
constitutive relation for an elastic solid.

As is commonly done, is is convenient towrite the Lamé coefficients in a different
form. We define

=
E

(1+ )(1− 2 )
, (9.11)

=
E

2(1+ )
, (9.12)

where E is called the Young’s modulus and is the Poisson ratio. The resulting
expression for the stress tensor is

ij =
E

1+

(
ij + 1− 2 kk ij

)
, (9.13)

The second law of thermodynamics dictates that E ≥ 0 and−1 ≤ ≤ 1/2 (which
we will not derive here). Thus, the stress associated with an elastic deformation is of
order E .

9.2.3 Equation of motion for an elastic solid

Now that we have our constitutive relation, we canwrite the equation ofmotion from
the statement of conservation of linear momentum. The local velocity, vi, is related
to the displacement as vi = ∂tui. Thus, we can write

dvi

dt
=

(
∂2

t ui + (∂tuj)∂j∂tui
)
= −∂j ij, (9.14)

where the t’s denote time derivatives and are not summed over. Evidently, this is
a wave equation in the displacement. The dynamics then describe elastic waves
through the solid. We know these waves as sound. The dynamics are usually very
fast compared to biological time scales of interest, so we usually neglect the left hand
side of the equation of motion. Typically with elastic solids, we will study only stat-
ics, as governed by the constitutive relation itself.
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9.3 Constitutive relation for an isotropic viscous fluid

If we look at the expression for the elastic stress, we see that it scales like the displace-
ment, ∼ E . For a fluid, we would not expect this to be the case. If we displace
a fluid and then let it rest, we do not have to exert any more force to maintain the
displacement. Instead, we expect that the stress we need to exert on a fluid to move
it will be related to the rate at which we make deformations, ∂t∂iui. In other words,
if we want to move a fluid more rapidly, it will require more force than to move it
slowly. The actual magnitude of the displacement will not matter; only the rate at
which we make displacements. We then define the velocity gradient tensor ∂ivj, on
which the stress tensor will surely depend. This tensor can be written as

∂ivj =
1
2
(∂ivj + ∂jvi) +

1
2
(∂ivj − ∂jvi) =

1
2
(vij + ij). (9.15)

The first term is vij, a symmetric tensor (vij = vji), and the second term is usually
written as ij and is an antisymmetric tensor ( ij = − ji). Due to the symmetry of
an isotropic fluid and conservation of angularmomentum (whichwewill not formally
consider here), the stress tensor must be symmetric, whic means that ij does not
contribute to it.

We might also expect the stress to include the hydrostatic pressure, p. After all,
pumps move fluids around by exerting pressure on them. So, we additionally have a
−p ij term in the stress tensor. For an isotropic viscous fluid, then, we have

ij = −p ij + Cijklvkl. (9.16)

Again, we use the fact that a linear relationship between two rank 2 symmetric ten-
sors that remains invariant under change of coordinates can be written with Lamé
coefficients.

ij = −p ij + vkk ij + 2 vij. (9.17)

We will define and v such that = and = ( v − 2 )/3. Then, we have

ij = −p ij + 2
(

vij −
vkk

3 ij

)
+ v

3
vkk ij. (9.18)

The quantity is called the viscosity, or shear viscosity, and v is called the bulk
viscosity. It is clear that v determines the contribution of isotropic compression
to the stress. For am incompressible fluid, the continuity equation (8.23) gives that
vkk = ∂kvk = 0, so the stress tensor is

ij = −p ij + 2 vij = −p ij + (∂ivj + ∂jvi). (9.19)
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9.4 Equation of motion for an incompressible isotropic viscous fluid

Now thatwehave the constitutive relation, we canwrite down the equation ofmotion
for an incompressible isotropic viscous fluid. This is the statement of conservation
of linear momentum.

dvi

dt
= −∂j ij = ∂ip − ∂j∂jvi, (9.20)

Wecannondimensionalize this equation, choosing x = ℓx̃, vi = Uṽi, and p = p̃ U/ℓ.
The resulting equation is

ℓ2
∂tṽi +

Uℓ
ṽj∂jṽj = ∂ip̃ − ∂j∂jṽi

= Re (Sr ∂t + ∂jṽj) ṽi = ∂ip̃ − ∂j∂jṽi, (9.21)

where the derivatives are now over dimensionless variables and we have defined the
Reynolds number Re = Uℓ/ and the Strouhal numbers, Sr = (ℓ/U)/ . The
Reynolds number is the ratio of the inertial energy, U2ℓ3, to the energy loss due to
viscous dissipation, Uℓ2. The Strouhal number is the ratio of the advective time
scale, ℓ/U to any other pertinent time scale of interest, . If Re ≪ 1 and Re Sr ≪
1, then the left hand side of the equation of motion is negligible compared to each
term in the right hand side. In cell and developmental biology, this is generally the
case. We can estimate it. The density of our material is close to that of water, or
103 kg/m3. The smallest viscosity is that of water, which is about 10−3 kg-m/s. The
longest length scale we generally consider in early embryos is about 1 mm = 10−3 m.
The faster speeds could conceivably be that of the fastest motor proteins, about 100
µm/s = 10−4 µm/s. Putting this together gives a Reynolds number of Re = 0.1. We
have intentionally overestimated this, since most fluid-like embryonic movements
more more slowly, over shorter distances, and with much higher viscosity. So, we
are generally justified in neglecting the left hand side of the equation of motion, and
we have

∂j ij = 0. (9.22)

We will talk in more depth about dynamics of isotropic incompressible viscous
fluids at low Reynolds number when we study the He, at al. paper toward the end of
the course. Now, we will move on to active fluids.

9.5 Isotropic active viscous fluid

Out immediate goal is to model the acto-myosin cortex of the developing C. elegans
embryo. The cortex is an example of an active fluid, in that it can exert stresses
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upon itself. This is achieved through the activity of motor proteins that cross-link
actin filaments. Working together, themotors serve to compress the actinmeshwork.
We therefore add an active stress to the stress tensor. We will define the magnitude
of this active stress to be a. In general, this can be a function of myosin motor
concentration or the concentration of any other factor that regulates actin of motor
activity. So, our updated stress tensor is

ij = −p ij + 2 vij + a ij. (9.23)

Apparently, from the definition of the stress tensor, the active stress is indistinguish-
able from the hydrostatic pressure, since they always appear together as a sum. Let
us investigate this further by writing the equation of motion with the new stress ten-
sor (again, assuming the dynamics are intertialess).

∂j∂jvi − ∂i(p − a) = 0. (9.24)

We take the curl of both sides of the equation.

kli∂k ( ∂j∂jvi − ∂i(p − a)) = ∂j∂j i = 0, (9.25)

where we have defined the curl of the velocity field as the vorticity, i (not to be
confused the the antisymmetric part of the velocity gradient tensor, ij). This tells
us that the dynamics of the vorticity are given by

∂j∂j i = 0, (9.26)

meaning that the motion is entirely determined by the boundary conditions.

Now, we will take the divergence of both sides of the equation of motion.

∂i ( ∂j∂jvi − ∂i(p − a)) = ∂j∂j[∂ivi]− ∂i∂i(p − a) = 0. (9.27)

The bracketed term is zero for an incompressible fluid by the continuity equation.
Thus, the difference between the pressure and active stress are set by

∂i∂i(p − a) = 0. (9.28)

This equation must hold regardless what the velocity field is to enforce incompress-
ibility. Therefore, the quantity p− a is set entirely by incomressibility and the active
stress can have no effect on the fluid dynamics that is distinguishable from the hy-
drostatic pressure. So, we cannot really model the cortex as an active incompressible
isotropic fluid because this is indistinguishable from a non-active fluid.

9.6 Active nematic viscous fluid

The cortex consists of crosslinked filaments of actin. It therefore stands to reason
that it is not isotropic because it consists of these stick like structures. We can define
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a local vector, called a director that describes the average orientation of the filaments
in a small volume element. We will call this vector ni and specify that it is a unit vec-
tor. We could define the local order in terms of ni itself, but instead we will consider
the case where the sign of the direction of the director is immaterial. Physically, this
means that the “sticks” in the fluid do not have arrowheads; pointing in the posi-
tive x direction is the same as pointing in the negative x direction. In this case, we
need to construct a nematic order parameter that respects this nondirectionality.
As shown by de Gennes in the study of liquid crystals, this order parameter is a rank
2 tensor that can be constructed from the director as

Qij = S
(

ninj −
1
3 ij

)
. (9.29)

Here, S is the magnitude of the local order. The nematic order parameter is sym-
metric and traceless.

Now that we have this order parameter that describes the fluid, we no longer
have the isotropy we enjoyed when writing down the stress tensor for a simple fluid.
Deriving the stress tensor is a bit more difficult, but under certain assumptions, we
can write it as

ij = −p ij + 2 vij + 1( − L∂k∂k)Qij. (9.30)

The last termdescribes the tendency for the order parameter to return to zero,mean-
ing that the filaments have a tendency to be randomly oriented.

Now, we canwrite the active stress in terms of the order parameter. We canwrite
it to linear order as a Taylor expansion.

active =
0
a ij + aQij. (9.31)

The first term describes the isotropic contraction due to active stresses. This is the
same term as in the isotropic case and is indistinguishable from the pressure. We
will therefore absorb it into the pressure and define = p − 0

a . The last term is
directional stress exerted along the nematic order. So, our stress tensor for an active
nematic fluid is

ij = − ij + 2 vij + 1( − L∂k∂k)Qij + aQij. (9.32)

The equation of motion is then, considering again the interialess limit,

∂j ij = 0 = −∂i + ∂j∂jvi + 1( − L∂k∂k)∂jQij + ∂j( aQij). (9.33)

9.7 Two-and-one-dimemsional active nematic fluid

In homework 4, you will derive the equation of motion for an active nematic fluid
that is confined to two dimensions. You will then make some assumptions about the
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symmetry of the flow to reduce the result to a one-dimensional equation. This is the
equation used in theMayer, et al. paper to describe the cortex dynamics. Specifically,
you will derive that

− ∂2
x vx + vx = ∂x a, (9.34)

where is a friction coefficient. This equation means that gradients in active stress
drive cortical flow against viscous dissipation and frictional losses.
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