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11 Applications of elasticity

In this lecture, we will look at two applications of elasticity theory. First, we will
study the laser ablation experiment of the Mayer, et al. paper. Then, we will derive
the Young-Laplace law, a key result in interpreting the Maître, et al. paper.

11.1 Analysis of cortical laser ablation experiments

In the Mayer, et al. paper, the authors used cortical laser ablation (COLA) to cut
a line in the cortex of the C. elegans embryo and observe the recoil. By comparing
the initial velocity of the recoil of two different experiments, they could compare the
total tension present in the cortex immediately before ablation. Why is this the case?

To analyze this equation, we consider the cortex as an active elastic material. The
cortex itself is viscoelastic, meaning that it exhibits both elastic (solid-like) and viscous
(fluid-like) properties. On long time scale, that is for slow deformations, the cortex
is viscous. This is what we have analyzed thus far when considering the flow of the
cortex. Conversely, when the cortex is ablated, the response is very rapid, occurring
on short time scales, and the cortex is elastic. We can write down a constitutive
relation for this two-dimension active elastic material.

ij =
E

1+

(
ij + 1− 2 kk ij

)
+ aQij, (11.1)

where Qij = 1 is i = j = x or i = j = y and zero otherwise. For the active term, we
have taken the same approach as we did in homework 4, assuming that the filaments
lie within the x-y plane and that the nematic order rapidly relaxes to its equilibrium
value. Note that we have absorbed constants fromQij into a, as we did in homework
4.

We will make a cut in the y-direction, which means that we are observing relax-
ation in the x-direction. Then, it is convenient to write the stress in the x-direction.

xx =
E

1+

(
1−
1− 2 xx + 1− 2

( yy + zz)

)
+ a. (11.2)

Since we are ablating in the y-direction, the recoil of the cortex is dominantly in along
the x-direction. Thus, we will take yy, zz ≪ xx, giving

xx =
E(1− )

(1+ )(1− 2 )
xx + a. (11.3)

Upon ablation, the cortex can no longer support stresses because thematerial has
been destroyed, so xx = 0. Thus, we take xx(t) = 0

xx(1− (t)), where we specify
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that the ablation takes place at t = 0. Thus, the strain prior to ablation is

0
xx ≡ xx(t < 0) =

(1+ )(1− 2 )

E(1− )
( 0

xx − a). (11.4)

Now that we have the stress tensor, we consider the geometry. The ablation line
is at position x = 0. We define by xc to be the position of the edge of the cortex at the
ablation line. This moves as the cortex recoils from the ablation. For the purposes of
this discussion, we will observe the right side of the ablation site. Now, xx = ∂xux,
where ux is the x-component of the displacement of the elements of the cortex from
their equilibrium positions. If the initial extent of the cortex in the x-direction was
L, and the deformation is distributed uniformly across the contracting cortex, then
∂xux ≈ (xc − L + x0)/L, where 0

xx = (x0 − L)/L. Then, we have

xx =
E(1− )

(1+ )(1− 2 )

xc − L + x0
L

+ a = kxc + kL 0
xx + a, (11.5)

where k ≡ E(1− )/L(1+ )(1− 2 ). We note that kL 0
xx =

0
xx − a, so we can

further simplify.

xx = kxc + xx0. (11.6)

Already we see that the active stress vanishes from the dynamics. We note that the
cortex does not instantaneously achieve its new equilibrium. This is because there
is dissipation due to friction with the surrounding membrane and cytoplasm. The
above equation constitutes a force balance, and we need to also include the frictional
force. This will be proportional to the velocity of the recoil, or ∂txc. Thus, we get

xx = kxc +
0
xx + ∂txc, (11.7)

With this force balance, we can study the dynamics of the recoil from aCOLA exper-
iment. Upon ablation, the cortex can no longer support stresses because thematerial
has been destroyed, so xx = 0. Thus, we take xx(t) = 0

xx(1− (t)). Then, we are
left with the ODE

∂txc = −kxc − 0
xx +

0
xx(1− (t)) = −kxc − 0

xx (t). (11.8)

If the ablation happens at time t = 0, then for t < 0, we have ∂txc = 0. This is
consistent with xc(t = 0) = 0. For t > 0, we have

∂txc = −kxc − 0
xx. (11.9)

This first order linear differential equation is easily solved to give

xc(t) = ce−kt/ −
0
xx

k
(11.10)
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where c is a constant of integration. We match to the initial condition that xc = 0 to
get that c = 0

xx/k. Thus, we have

xc(t) =
0
xx

k
(1− e−kt/ ). (11.11)

The outward velocity of the bleeding edge of the ablation is then

v(t) = ∂txc =
0
xx e−kt/ . (11.12)

So, the initial outward velocity is 0
xx/ , which is proportional to the total x-directional

stress that was present in the cortex immediately prior to ablation. We cannot access
the value of 0

xx because we do not know what is. However, we can compare ex-
periments to see the relative magnitudes of the stress present in the cortex. Further,
if is the same across experiments, which we would expect it to be, the decay of the
outward velocity is proportional to the stiffness (the Young’smodulus) of the cortex.

11.2 The Young-Laplace Law

As we move on to study the Maître, et al. paper, we derive an important result, the
Young-Laplace law. It describes the relationship between surface areas of a two-
dimensional sheet (like the periphery of a cell) and pressure differences across the
surface. We will first consider a simple version of the law and then derive a more
general one.

11.2.1 Young-Laplace law for a sphere

Consider a small piece of an elastic sheet of area a0. Now, let us stretch the sheet
such that the area is a. Then, the areal strain is a = (a − a0)/a0. If we write the
stretching energy as a function of the areal strain, we get

Estretch =

∫
dA f( a). (11.13)

We write f( a) as a Taylor series about a = 0, we get

Estretch =
1
2

∫
dA Ka

2
a , (11.14)

where we have taken the unstretched energy to be zero and have neglected terms
higher than second order. The parameter Ka is the areal stretch modulus, and has
units of energy per area.
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Now, we define the surface tension, , as the energy it takes to expand a differ-
ential element of the sheet by a differential area. That is,

=
∂Estretch

∂A
. (11.15)

For a small differential element of area a,

Estretch =
1
2

∫
dA Ka

2
a ,≈

Ka

2
a0

2
a =

Ka

2
(a − a0)2

a0
. (11.16)

so the surface tension is

=
∂Estretch

∂a
= Ka

(a − a0)

a0
= Ka a. (11.17)

So, we can write the stretching energy as

Estretch =

∫
dA . (11.18)

For a sphere, this is

Estretch = 4 R2 . (11.19)

Now, consider the free energy of such a vesicle, making sure to consider also pV
contributions.

F = Estretch − pV = Estretch − (pin − pout)V = 4 R2 +
4
3

R3(pout − pin). (11.20)

To find the equilibrium radius, we differentiate and set the derivative to zero.

∂F
∂R

= 8 R − 4 R2(pin − pout) = 0. (11.21)

Rearranging gives the Young-Laplace Law,

pin − pout =
2
R

(11.22)

11.2.2 Energetics of curvature of an elastic sheet

In addition to stretching a sheet, we may also bend it. We can describe the bending
using the curvature of a sheet. We define the positions of the surface of a sheet with
a function h(x, y). Then, analogously to how bending of a filament is a function of the
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curvature of the filament, the bending energy of a sheet is a function of the curvature
tensor,

Cij = ∂i∂jh. (11.23)

We can write the total bending energy of a sheet as

E =

∫
dA f(Cij). (11.24)

We write f(Cij) as a Taylor series in the curvature tensor to second order.

f(Cij) ≈ a0 + a1Ckk + a2(Ckk)
2 + a3CikCik. (11.25)

Note thatCkk is the trace of the curvature tensor, whichwedefine asCkk = 2H, where
H is called the mean curvature. We call it that because the principle curvatures
(which we will call C1 and C2) are the eigenvalues of the curvature tensor, and the
mean of these curvatures is half the trace. For a 2×2 tensor, CijCij = (2H)2 − 2K,
where K = C1C2. This is called the Gaussian curvature. So, we only have two
independent parameters, the mean curvature and the Gaussian curvature. We can
re-write this as

f(H,K) = +
2
(2H − C0)

2 + ¯K, (11.26)

where is the bending rigidity, ¯ is the Gaussian rigidity, is the surface tension,
and C0 is the spontaneous curvature. The relations to the original expansion coeffi-
cients are

a0 = +
2

C0, (11.27)

a1 = C0, (11.28)

a2 =
+ ¯

2
, (11.29)

a3 = −
¯

2
. (11.30)

While we will not derive it here, Gauss’s Theorema Egregium states that K is in-
variant under isometric transformation. TheGauss-Bonnet theoremsays that

∫
dA K =

2 (S), where (S) is the Euler-Poincaré characteristic, (S) = 2(1− g), where g
is the genus of the surface. The genus is the number of handles, or donut holds in the
surface. A torus has g = 1; a sphere has g = 0. These two theorems together guar-
antee that provided we do not introduce holes into the surface, the quantity

∫
dA ¯K

is constant, provided ¯ is constant. Thus, the energy of the surface is

E = constant+
∫

dA +

∫
dA

2
(2H − C0)

2. (11.31)

The first term is the stretching energy we have already derived and the second term
is the bending energy.
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11.2.3 Generalized Young-Laplace

The simple treatment we used in section 11.2.1 to derive the Young-Laplace law for
a sphere may be generalized. Specifically, for a sphere, we found that the stretching
term in the above expression for energy is

Estretch =

∫
dA = 4 R2 , (11.32)

where is constant on the sphere. To compute the energy for amore general geome-
try, we need to consider the differential areal element, dA. Determining dA requires
some techniques of differential geometry, which we we not go into here, except to
say that the differential areal element depends on the local curvature Cij and an ob-
ject known as the metric tensor. Instead of delving into differential geometry (which
is a beautiful and fascinating field of mathematics), we will instead attempt to work
out the dependence of the total stretching energy on the curvature by doing a local
force balance.

Imagine we have a small piece of a sheet. At a point on the surface, we define two
orthogonal directions, 1 and 2. These orthogonal directions can be the directions
of principle curvature, i.e., the eigenvectors of the local curvature tensor Cij. The
eigenvectors can be made to be orthonormal, since the curvature tensor is real and
symmetric, cf. equation (11.23). Let the arc that lies along direction 1 be of length
ds1 and that along direction 2 be of length ds2. Then, the areal element is dA =
ds1 ds2. The force in the direction normal to the surface is ds2 sin 1, which for a
small 1 (which is the case for a differential element) is approximately ds2 1. But,

1C1 = ds1, as given by the formula for arc length. Thus, the force acting normal
to the surface due to curvature in the 1-direction is ds1ds2/C1. Similarly, for the
2-direction, we have a force of ds1ds2/C2. So, we have a total normal force due to
surface tension of ds1ds2/(C1 + C2) = 2Hds1 ds2. This force is balanced by the
pressure force, which is (pin − pout)dA = (pin − pout)ds1 ds2. Thus, we have

pin − pout = 2H , (11.33)

our generalized Young-Laplace law. Recall that for a sphere, H = 1/R, so we recover
the expression we derived before.
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