TIPS FOR GOOD PRESENTATIONS:
 with an example talk on C. elegans optogenetics

Justin Bois
BE 159, Jan 13, 2016

It usually takes me more than three weeks to prepare a good impromptu speech.
-Mark Twain

Chlamydomonas has an eyespot with Channelrhodopsin

Channelrhodopsin is an optically-activated ion channel

Channelrhodopsin is an optically-activated ion channel

Channelrhodopsin is an optically-activated ion channel

Channelrhodopsin is an optically-activated ion channel

Induced charge difference mimics an action potential

membrane potential

Optogenetics: put opsins in specific neurons

Karl Deisseroth

Optogenetics is used to control the thirst sensation

How does proximity of the Channelrhodopsin TO MOTOR NEURONS AFFECT RESPONSE?

C. elegans is an ideal organism for optogenetics

Complete set of genetic tools

Simple nervous system

Transparent!

The C. elegans reversal circuit is well-mapped and simple

Channelrhodopsin can be expressed in specific neurons

Channelrhodopsin-2

Channelrhodopsin can be expressed in specific neurons

Channelrhodopsin-2

The experiment costs less than \$300

The command interneuron

 shows the strongest responseFraction of reversals

wild type
sensory neuron

AVA command interneuron
$33 / 36$

We use Bayes's theorem to quantify reversal probability

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$A=p_{\text {rev }}=$ probability of reversal
$B=n, r=r$ reversals in n trials

We use Bayes's theorem to quantify reversal probability

$$
\begin{aligned}
P\left(p_{\text {rev }} \mid n, r\right) & =\frac{P\left(n, r \mid p_{\text {rev }}\right) P\left(p_{\text {rev }}\right)}{P(n, r)} \\
& =\frac{\operatorname{Binomial}\left(r \mid n, p_{\text {rev }}\right) \times \operatorname{Uniform}(0,1)}{\operatorname{Uniform}(0, n+1)}
\end{aligned}
$$

$p_{\text {rev }}=$ probability of reversal $n, r=r$ reversals in n trials

A Bayesian analysis give a complete description of reversal probability

$$
P\left(p_{\text {rev }} \mid n, r\right)
$$

95\% confidence intervals reveal quantitative difference in reversal probability

Probability of reversal

wild type

ASH sensory neuron

AVA command interneuron

How does proximity of the Channelrhodopsin to motor neurons affect response?

Probability of reversal

wild type

ASH sensory neuron

AVA command interneuron

Stimulation of the command interneuron is more than twice as likely to invoke a response.

This experiment was conducted by the students of $\mathrm{Bi} 1 \times 2015$

It was developed by Meaghan Sullivan with help from Ravi Nath and Kevin Yu

The talk content has a top-down hierarchical structure

Main message

Main points

Subpoints

You should have one slide for each subpoint

Main message

Main points

Subpoints

One idea, one slide.

The talk structure is linear

Introduction	Attention getter
	Need
	Task
	Main message
Body	Main point 1
	Main point 2
	Main point 3
Closing	Review
	Conclusion
	Close

Jean-luc Doumont's work is an excellent resource

Trees, maps, and theorems

Jean-luc Doumont

C. elegans

- Well-established model organism
- Has 302 neurons
- Easy to manipulate
- Can put opsins in single neurons using a host of available genetic tools
- It is transparent, so no need for fiberoptic wires.

C. elegans is an ideal organism for optogenetics

Complete set of genetic tools

Simple nervous system

Transparent!

This is a bad bar chart

The command interneuron

 shows the strongest responseFraction of reversals

wild type
sensory neuron

AVA command interneuron
$33 / 36$

This is a bad schematic of an action potential

Induced charge difference mimics an action potential

membrane potential

This is an ugly, noisy plot

A Bayesian analysis give a complete description of reversal probability

$$
P\left(p_{\text {rev }} \mid n, r\right)
$$

Let professionals pick your colors

[^0]
The C. elegans reversal circuit is well-mapped and simple

The C. elegans reversal circuit is well-mapped and simple

This equation is ok, but can be confusing

 and a little hard to read$$
\begin{aligned}
P\left(p_{\mathrm{rev}} \mid n, r\right) & =\frac{P\left(n, r \mid p_{\mathrm{rev}}\right) P\left(p_{\mathrm{rev}}\right)}{P(n, r)} \\
& =\frac{(n+1)!}{(n-r)!r!} p_{\mathrm{rev}}^{r}\left(1-p_{\mathrm{rev}}\right)^{n-r}
\end{aligned}
$$

We use Bayes's theorem to quantify reversal probability

$$
\begin{aligned}
P\left(p_{\text {rev }} \mid n, r\right) & =\frac{P\left(n, r \mid p_{\text {rev }}\right) P\left(p_{\text {rev }}\right)}{P(n, r)} \\
& =\frac{\operatorname{Binomial}\left(r \mid n, p_{\text {rev }}\right) \times \operatorname{Uniform}(0,1)}{\operatorname{Uniform}(0, n+1)}
\end{aligned}
$$

$p_{\text {rev }}=$ probability of reversal $n, r=r$ reversals in n trials

Why is General McChrystal so angry?

Afghanistan Stability / COIN Dynamics

Population/Popular Support Infrastructure, Esonomy. \& Services Government

WORKING DRAFT - V3

Why is General McChrystal so angry?

When we understand that slide, we'll have won the war.
-Gen. Stanley McChrystal

General Mattis is more blunt

PowerPoint makes us stupid.
-Gen. James Mattis
(paraphrased from Edward Tufte)

Stage 11 oocytes exhibit fast streaming

00:00

Stage 11 oocytes exhibit fast streaming

[^0]: support bremern mar marrowef and the Pennsymaria soce unversity
 support
 Back io Colorsisever 10

