TIPS FOR GOOD PRESENTATIONS: WITH AN EXAMPLE TALK ON C. ELEGANS OPTOGENETICS

Justin Bois BE 159, Jan 13, 2016 It usually takes me more than three weeks to prepare a good impromptu speech.

—Mark Twain

Chlamydomonas has an eyespot with Channelrhodopsin

Induced charge difference mimics an action potential

Optogenetics: put opsins in specific neurons

Karl Deisseroth

Optogenetics is used to control the thirst sensation

How does proximity of the Channelrhodopsin to motor neurons affect response?

C. elegans is an ideal organism for optogenetics

Complete set of genetic tools

Simple nervous system

Transparent!

The C. *elegans* reversal circuit is well-mapped and simple

Adapted from WormAtlas

Channelrhodopsin can be expressed in specific neurons

BWmu

Muscle

Channelrhodopsin-2

Adapted from WormAtlas

Channelrhodopsin can be expressed in specific neurons

Adapted from WormAtlas

The experiment costs less than \$300

The command interneuron shows the strongest response

We use Bayes's theorem to quantify reversal probability

$$P(A | B) = \frac{P(B | A) P(A)}{P(B)}$$

$$A = p_{rev} = probability of reversal$$

 $B = n, r = r$ reversals in *n* trials

We use Bayes's theorem to quantify reversal probability

$$P(p_{rev} \mid n, r) = \frac{P(n, r \mid p_{rev}) P(p_{rev})}{P(n, r)}$$
$$= \frac{Binomial(r \mid n, p_{rev}) \times Uniform(0, 1)}{Uniform(0, n+1)}$$

 $p_{rev} = probability of reversal$ n, r = r reversals in n trials

A Bayesian analysis give a complete description of reversal probability

95% confidence intervals reveal quantitative difference in reversal probability

How does proximity of the Channelrhodopsin to motor neurons affect response?

Stimulation of the command interneuron is more than twice as likely to invoke a response.

This experiment was conducted by the students of Bi 1x 2015

It was developed by Meaghan Sullivan with help from Ravi Nath and Kevin Yu

The talk content has a top-down hierarchical structure

Main message

Main points

Subpoints

You should have one slide for each subpoint

Main message

Main points

Subpoints

ONE IDEA, ONE SLIDE.

The talk structure is linear

Jean-luc Doumont's work is an excellent resource

C. elegans

- Well-established model organism
- Has 302 neurons
- Easy to manipulate
- Can put opsins in single neurons using a host of available genetic tools
- It is transparent, so no need for fiberoptic wires.

C. elegans is an ideal organism for optogenetics

Complete set of genetic tools

Simple nervous system

Transparent!

This is a bad bar chart

The command interneuron shows the strongest response

This is a bad schematic of an action potential

Induced charge difference mimics an action potential

This is an ugly, noisy plot

A Bayesian analysis give a complete description of reversal probability

Let professionals pick your colors

© Cynthia Brewer, Mark Harrower and The Pennsylvania State University Support Back to Flash version Back to ColorBrewer 1.0 🙋 axismaps

The C. *elegans* reversal circuit is well-mapped and simple

The C. *elegans* reversal circuit is well-mapped and simple

This equation is ok, but can be confusing and a little hard to read

$$P(p_{\text{rev}} \mid n, r) = \frac{P(n, r \mid p_{\text{rev}}) P(p_{\text{rev}})}{P(n, r)}$$
$$= \frac{(n+1)!}{(n-r)!r!} p_{\text{rev}}^r (1-p_{\text{rev}})^{n-r}$$

We use Bayes's theorem to quantify reversal probability

$$P(p_{rev} \mid n, r) = \frac{P(n, r \mid p_{rev}) P(p_{rev})}{P(n, r)}$$
$$= \frac{Binomial(r \mid n, p_{rev}) \times Uniform(0, 1)}{Uniform(0, n+1)}$$

 $p_{rev} = probability of reversal$ n, r = r reversals in n trials

Why is General McChrystal so angry?

WORKING DRAFT – V3

Why is General McChrystal so angry?

When we understand that slide, we'll have won the war.

—Gen. Stanley McChrystal

General Mattis is more blunt

PowerPoint makes us stupid.

—Gen. James Mattis (paraphrased from Edward Tufte)

Stage 11 oocytes exhibit fast streaming

50 µm

Stage 11 oocytes exhibit fast streaming

