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2 Biochemical kinetics in signaling

When we look at a picture of how signaling works in a cell, as in Fig. 1, we see that a
variety of processes occur along the signaling pathway. There is ligand binding to re-
ceptors that are embedded in a two-dimensional surface, the cell membrane. There
is the transport, either passive by diffusion or active by motorproteins, of signaling
molecules or transcription factors through the cytoplasm. Then, the transcription
factor needs to get into the nucleus via nuclear pore complexes. From there, it needs
to find the appropriate promoter to bind on the genome, an interesting transport
problem by itself. There are plenty of interactions with the machinery involved in
transcription, post transcriptional modifications, and eventual export from the nu-
cleus. There are lots and lots of kinetic processes! We might throw our hands up in
the air and scream that we do not know how to model all of that.

Figure 1: Schematic of a generic signaling pathway. Taken from Orphanides
and Reinberg, Cell, 108, 429–451, 2002.

So how do we overcome this modeling paralysis and proceed to develop physical
description of these processes? There are a few main ideas we can consider to deal
with this issue.

1. Separation of time scales. Some of the processes that happen along a signal-
ing pathway are very fast compared to others. So, if we are interested in the
dynamics of the entire pathway, say in terms of the more global response of a
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cell to a variation in ligand concentration, we can ignore the fast processes, or
at least assume that fast dynamics reach equilibrium rapidly.

2. Assumption of Poisson processes. In this context, a Poisson process may
be thought of as a series of well-defined, separate events that occur randomly,
without memory of what has occurred before. This is often the case for things
like molecular collisions. If we model the events along a signaling pathway as
Poisson processes, we can at least write down equations to describe the dy-
namics.

3. Consideration only of average properties. Instead of keeping track of what
each molecule in the cell is doing, we can instead only consider how the con-
centrations of molecular species.

In what follows, we will put these approximations to use to arrive amass action
kinetics to describe the dynamics of molecules involved in cell signaling, and in-
deed in many other cellular processes. These ideas are central to the Goentoro and
Kirschner paper, and will come into play throughout the rest of the course.

2.1 Thinking probabilistically: Master equations

Let us define very broadly a state s of a system to include allmolecular species. When-
ever there is a change of state, say from s′ to s, there is a unit change in molecular
species. For example, two proteins molecules that are bound to each other can sep-
arate, and this would lead to a state change. You can imagine that the state space
available to all molecules in a cell is enormous. Nonetheless, let us move forward to
write down a master equation to describe the dynamics of the probability that the
molecular species of a cell are in state s at time t, which we denote as P(s, t).

Generally, amaster equation is a loss-gain equation for probabilities of states gov-
erned by a Markov process.1 Specifically,

dP(s, t)
dt

=
∑

s′

[W(s | s′)P(s′, t)−W(s′ | s)P(s, t)] . (2.1)

Here, W(s | s′) is the transition probability per unit time of going from s′ to s. Note
that there is an ODE for each of the many many many states s.

Themaster equationmakes sense by inspection and appears simple. The nuance
lies in the definition of the transition rates,W(s | s′). There is also the computational
difficulty that state space is enormous. In general, solving the master equation is
difficult and is usually intractable analytically.

1A good reference for studying master equations is Stochastic Processes in Physics and Chemistry by
N. G. van Kampen.
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Tomake somemore progress, let’s restrict what we call a “state.” Wewill define
a state to be a set of copy numbers of molecular species. At this point, it helps to be
less abstract and think of a concrete example. Consider the case where two signal-
ing molecules, a and b may bind and unbind to each other, and these are the only
molecules we are considering. There are then three molecular species a, b, and ab.
We then define a state by the copy numbers of these respective species.

s → n ≡ (na, nb, nab). (2.2)

Then, we can re-write the master equation as

dP(n, t)
dt

=
∑

n′
[W(n | n′)P(n′, t)−W(n′ | n)P(n, t)] . (2.3)

2.2 Assigning the transition rates

Since the events that change the state are binding of an a and a b molecule or the
dissociation of an ab complex, we know that very many of the transition rates,W(n |
n′) are zero. Specifically,W(na, nb, nab | n′a, n′b, n′ab) = 0 for all cases except:

nab = n′ab − 1, na = n′a + 1, nb = n′b + 1 (dissociation)

or nab = n′ab + 1, na = n′a − 1, nb = n′b − 1 (binding). (2.4)

What value should we assign W(n | n′) for these two cases? Consider first disso-
ciation. The probability per unit time of getting a dissociation event should be de-
pendent on the number of ab complexes there are. If there are no ab complexes, the
probability of getting a dissociation is zero. If we further assume that the complexes
are all independent of each other, valid in the dilute limit, then the probability of ob-
serving a transition should be proportional to the number of ab complexes. Finally,
since we model all processes as Poisson processes, there is no memory, so therefore
no temporal dependence. So, we have

Wdissoc = k−1 nab, (2.5)

where k−1 is a constant. (The subscript−1 denote dissociation; we will use the sub-
script 1 for binding.)

Now, let’s consider binding. Again, the transition rate for binding should be inde-
pendent of time becausewe are dealingwith Poisson processes. In order for a binding
event to happen, two molecules need to collide. The probability of collision should
scale with the copy number of each species, a and b. It should also scale inversely
with the available volume (or surface area if we are talking about binding events on
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a membrane). In other words the bigger the volume, the less likely it is to observe a
collision.2 So, we have

Wbinding = k1nanb/V, (2.6)

where V is the volume of the cell or system of interest.

Now that we know our transition rates, we can rewrite the master equation.

dP(na, nb, nab, t)
dt

=
k1
V
(na + 1)(nb + 1)P(na + 1, nb + 1, nab − 1, t)

+ k−1(nab + 1)P(na − 1, nb − 1, nab + 1, t)

−
(
k1
V

nanb + k−1nab

)
P(na, nb, nab, t), (2.7)

where it is understood that P(na, nb, nab, t) is zero if any of na, nb, or nab are less than
zero.

2.3 Dynamics of averages

Wenowhave aworkablemaster equation, but there still many, many equations. If we
instead consider instead how the average number of each species changes over time,
we can greatly reduce the number of equations. In doing this, we are throwing out
much of the information contained in the probability distribution P(n, t), considering
only its first moment. With that caveat in mind, let’s compute the first moment.
Recall that the average number of amolecules is

⟨na⟩(t) =
∞∑

na=0

na P(na, t), (2.8)

with

P(na, t) =
∞∑

nb=0

∞∑

nab=0

P(na, nb, nab, t), (2.9)

thereby giving

⟨na⟩(t) =
∞∑

na=0

∞∑

nb=0

∞∑

nab=0

na P(na, nb, nab, t). (2.10)

2That the transition rate is proportional to V−1 and not, say, V−2 requires some careful analysis
we will not go into here.

5



So, we will multiply both sides of equation (2.7) by na and apply the triple sum
∞∑

na=0

∞∑

nb=0

∞∑

nab=0

(2.11)

to the resulting equation. Evaluation of the left hand side of equation (2.7) is trivial.
∞∑

na=0

∞∑

nb=0

∞∑

nab=0

na
dP(na, nb, nab, t)

dt
=

d⟨na⟩
dt

. (2.12)

The last two terms on the right hand side are the easiest to evaluate.

−
∞∑

na=0

∞∑

nb=0

∞∑

nab=0

k1
V

n2anb P(na, nb, nab, t) = −k1
V

∞∑

na=0

∞∑

nb=0

n2anb P(na, nb, t)

= −k1
V
⟨n2anb⟩. (2.13)

Similarly,

−
∞∑

na=0

∞∑

nb=0

∞∑

nab=0

k−1nanab P(na, nb, nab, t) = −k−1⟨nanab⟩. (2.14)

In these expressions, for notational convenience, we have not written the explicit
time dependence of the averages. Now, we will work on the first sum on the right
hand side.

∞∑

na=0

∞∑

nb=0

∞∑

nab=0

k1
V

na(na + 1)(nb + 1)P(na + 1, nb + 1, nab − 1, t)

=
k1
V

∞∑

na=0

∞∑

nb=0

∞∑

nab=0

na(na + 1)(nb + 1)P(na + 1, nb + 1, nab, t)

=
k1
V

∞∑

na=0

∞∑

nb=0

na(na + 1)(nb + 1)P(na + 1, nb + 1, t)

=
k1
V

∞∑

na=0

∞∑

nb=0

(na − 1)nanb P(na, nb, t)

=
k1
V

(
⟨n2anb⟩ − ⟨nanb⟩

)
. (2.15)

And finally, the second sum on the right hand side.
∞∑

na=0

∞∑

nb=0

∞∑

nab=0

k−1na(nab + 1)P(na − 1, nb − 1, nab + 1, t)

6



= k−1

∞∑

na=0

∞∑

nb=0

∞∑

nab=0

na(nab + 1)P(na − 1, nb, nab + 1, t)

= k−1

∞∑

na=0

∞∑

nab=0

na(nab + 1)P(na − 1, nab + 1, t)

= k−1

∞∑

na=0

∞∑

nab=0

(na + 1)nabP(na, nab, t)

= k−1 (⟨nanab⟩+ ⟨nab⟩) . (2.16)

Now that we have computed all of the sums, let’s put it all together.

d⟨na⟩
dt

=
k1
V

(
⟨n2anb⟩ − ⟨nanb⟩

)
+ k−1 (⟨nanab⟩+ ⟨nab⟩)−

k1
V
⟨n2anb⟩ − k−1⟨nanab⟩

= −k1
⟨nanb⟩
V

+ k−1⟨nab⟩. (2.17)

If we assume that the particle counts of species a and species b are independent, then
⟨nanb⟩ = ⟨na⟩⟨nb⟩. Then, we have

d⟨na⟩
dt

= −k1
⟨na⟩⟨nb⟩

V
+ k−1⟨nab⟩. (2.18)

The thermodynamic concentration of species i is ci = ⟨ni⟩/V. So, if we divide both
sides of the above equation by V, we get

dca
dt

= −k1cacb + k−1cab. (2.19)

If we do the same averaging technique with nb and nab, we get

dcb
dt

= −k1cacb + k−1cab, (2.20)

dcab
dt

= k1cacb − k−1cab. (2.21)

We now have three equations in terms of concentrations that we derived from the
master equation.

2.4 The law of mass action

Chemical rate equations like those we just derived, in which the rate of a chemical
reaction is proportional to the products of the concentrations of the participating
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molecular species follow the law of mass action, often referred to as mass action
kinetics.

It is important to recall all of the assumptions we made to get here.

1. Events that change state are Poisson processes. Implicit in this assumption
is that the binding or dissociation (or any other event) happens essentially in-
stantaneously with well-defined pauses between them. This is one instance of
where a separation of time scales is important.

2. All molecular species are independent of each other; i.e., we are in the dilute
limit.

3. In our last step, by taking ⟨nanb⟩ ≈ ⟨na⟩⟨nb⟩, we tacitly assumed thatP(na, nb, t) ≈
P(na, t)P(nb, t), i.e., that na and nb are independent of each other, or that they
have small covariance. Note that this is not always necessarily the case, espe-
cially at small copy number.

In addition to these assumptions, we are willfully throwing out all information about
the probability distributions of the stateswe’remodeling, except for the firstmoment
(the mean).

Going forward in the course, we will use and abuse the law of mass action exten-
sively. Especially when the copy number of molecules are small, this could lead to
trouble. Wemightmiss the important of noise (since we are neglecting fluctuations),
or some of the underlying assumptions might not be valid. Nonetheless, the law of
mass action is one of those approximate theories that is “unreasonably effective” in
the sense that we are surprised at howwell it tends to work inmatching experimental
observation.

2.5 Sigmoidal rate dependence?

If you have studied systems biology, you often find expressions for rates that are sig-
moidal in shape, such as

dc
dt

=
k1

k2 + c2
, (2.22)

a famous Hill function. This does not look like mass action at face. Where does this
come from?

You may be familiar with Michaelis-Menten kinetics for enzymatic activity. In
this scheme, a substrate s reacts with an enzyme e to form an intermediate which
then forms a product p according to the mechanism

e+ s
k1−−⇀↽−−
k−1

se
q1−→ e+ p. (2.23)

8



Now, let’s consider the case where the complex se might bind another substrate in
the reaction

se+ s
k2−−⇀↽−−
k−2

s2e
q2−→ se+ p. (2.24)

There are now six reactions in total and a total of five species. We could write master
equations, perform averages, and then get the mass action expressions, but we will
just directly write the mass action ODEs directly.

dcs
dt

= −k1cecs + k−1cse − k2csecs + k−2cs2e, (2.25)

dce
dt

= −k1cecs + (k−1 + q1)cse, (2.26)

dcse
dt

= k1cecs − (k−1 + q1)cse − k2csecs + (k−2 + q2)cs2e, (2.27)

dcs2e
dt

= k2csecs − (k−2 + q2)cs2e, (2.28)

dcp
dt

= q1cse + q2cs2e. (2.29)

We are primarily interested in the rate of consumption of substrate, so we seek a
simple expression for ċs in terms of the total enzyme and substrate concentration.
Toward this end, we make a pseudo steady state approximation that ċse − ċs2e = 0.
This means that the concentrations of the intermediates do not change appreciably
on the time scale of product formation. Again, this is an instance where separation
of time scales allows us to make useful approximations to simplify the mathematics.
As a result, we have

k1cecs = (k−1 + q1)cse, (2.30)

k2csecs = (k−2 + q2)cs2e. (2.31)

We can rewrite the first of these equation as

cecs = KM,1cse, (2.32)

where

KM,1 ≡
k−1 + q1

k1
(2.33)

is the Michaelis constant for the first reaction. We also get

cec2s = KM,1KM,2cs2e, (2.34)

9



with

KM,2 ≡
k−2 + q2

k2
. (2.35)

Since the total amount of enzyme is conserved, we define the constant amount of
enzyme

ctote ≡ ce + cse + cs2e. (2.36)

Using this relation along with equations (2.34) and (2.36) allows us to write an ex-
pression for ce in terms of ctote and cs.

ce = ctote

(
1+

cs
KM,1

+
c2s

KM,1KM,2

)−1

. (2.37)

Substituting this expression, along with equations (2.34) and (2.36) into the expres-
sion for ċs (equation (2.25)) gives, after simplification

dcs
dt

= − ctote (q1KM,2cs + q2c2s )
KM,1KM,2 + KM,2cs + c2s

. (2.38)

This equation has a sigmoidal form, and it looks like a typical phenomenological Hill
function (2.22) in certain limits. In particular, if q1 ≈ 0, that is if only the doubly-
complexed substrate can produce product, the numerator becomes q2ctote c2s . Further,
if KM,2 ≪ cs ≪ KM,1, the denominator becomes KM,1KM,2 + c2s . This means that
once one substrate molecules is bound to an enzyme, the second binds much faster
(its Michaelis constant is smaller). These limits are hallmarks of cooperativity. The
result is

dcs
dt

= − q2ctote c2s
KM,1KM,2 + c2s

. (2.39)

which has the same form as the Hill equation (2.22) with Hill coefficient of 2.

The important lesson here is that many molecular mechanisms can give kinet-
ics that relate to phenomenological Hill equations. But the Hill equation by itself
says very little about the underlying mechanism. In my view, if you have a molecular
mechanism in mind, it is best to derive the actual expressions you want to use. In
fact, because it is not difficult to numerically solver a system of ODEs, you are often
better off just directly solving the original mass action ODEs you write down with-
out approximation. In the Goentoro and Kirschner paper, however, you will see that
the big advantage of carefully doing analytical work, nondimensionalizing, and mak-
ing reasonable approximations is that you can draw more general conclusions and
sometimes expose structure to the system that might otherwise be difficult to see.
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2.6 Sigmoidal rates of gene expression

If we are interested in the kinetics of actual gene products, not just intermediates
along the signaling pathway, we need to model the gene expression levels. This is
often down by throwing Hill functions around. However, I encourage you to not do
this, but rather to think carefully about the structure of the promoter region and the
transcription factors that bind it. If you take BE/APh 161, this will be covered in
detail, and I omit it in this course.
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