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3 Wnt signaling

In this lecture, we will discuss methods for modeling biochemical networks using
mass action kinetics with the example of Wnt signaling as our motivation.

3.1 Introduction to Wnt signaling

TheWnt (pronounced “wint”) signaling pathway is central in many developmental
processes. To see how central it is, you might want to visit the Wnt homepage, run
by RoelNusse’s lab at Stanford, which details the components of the pathway as well
as a wealth of links to other information.

The history of the discovery of the Wnt family of proteins highlights its im-
portance in development. In their Nobel Prize-winning work published in 1980,
Nüsslein-Volhard and Wieschaus discovered several genes that are central to devel-
opment in Drosophila. One of these was a segment polarity gene Wingless (Wg).
The gene was so named because of its phenotype: wingless adult flies, so the gene
has downstream effects past regulation of segment polarity. A couple years later,
Nusse and Varmus discovered a gene in mice where mutations caused breast cancer,
which they named integration 1, or int1. It was later discovered that int1 was highly
conserved across species, including Drosophila, and that it was part of the same fam-
ily asWg. Going forward, this family of genes was referred to asWnt, a combination
of Wg and int.

During development, as we have mentioned in class, neighboring cells need to
communicate to each other for differentiation. Beyond that, they need to sense their
environment; e.g., they need to make changes to gene expression levels depending
on external morphogen concentrations. In order to accomplish this, the “signal”
must cross the cell membrane.

The Wnt pathway, shown in Fig. 2 is one major signaling pathway for accom-
plishing this. The transmembrane proteins Frizzled and LRP (lipoprotein receptor-
related protein) are Wnt’s binding partners. When unbound to Wnt, these proteins
do not interfere with the destruction cycle of -catenin, an important transcription
factor (more on -catenin soon). At the center of this destruction cycle is a com-
plex of axin and APC (commonly referred to as the axin complex), which recruit ca-
sein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK-3), which phosphorylate
-catenin. The phosphorylated -catenin is then targeted by -TrCP, which pro-

motes polyubiquitinization of the phosphorylated -catenin, which is then degraded
by the proteasome.

WhenWnt is present outside of the cell membrane, it binds to Fizzled and LRP,
bringing them together as a heterodimer. In this configuration, Frizzled mediates
the phosphorlyation and activation of Dishevelled (DVL, a.k.a. Dsh), which then
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Figure 2: Schematic of the Wnt signaling pathway. Taken from Fig. 8.15 of
Lim, Mayer, and Pawson, Cell Signaling, Garland Science, 2015.

has a strong affinity for axin. Furthermore, the tail of LRP is available for phospho-
rylation by CK1 and GSK-3. Thus, this activated Frizzled/LRP complex attracts the
components of the degradation complex, thereby making them less available for de-
grading -catenin. As a result, stable, unphosphorylated -catenin can enter the
nucleus. It then binds its coactivators, e.g., the transcription factor LEF1, and turns
on expression of target genes. There are many Wnt-controlled target genes; c-Myc,
a multifunctional regulator gene with roles in cellular transformation, is an example.

3.2 A more detailed look at Wnt signaling

In the Goentoro, et al. paper we are reading this week, we take a more detailed look
of Wnt signaling beyond the cartoon in Fig. 2. The model is based on the work in
Lee, et al. from the very first issue of PLoS Biology. Their schematic of Wnt signal-
ing is shown in Fig. 3. They have labeled protein-protein interactions with arrows,
each one identified with a number, with dashed arrows meaning interactions that
are mediated through other proteins. Importantly, they have labeled subprocesses
within this spaghetti-looking network to give it clarity. The destruction core cycle
of -catenin cycles along, provided the equilibrium described by reactions 4 and 5 is
unperturbed. The presence of a Wnt molecule affects this equilibrium by activating

13



Dishevelled, which affects the reaction 4/5 equilbrium by breaking down the inactive
APC/Axis, GSK-3 complex.

Figure 3: Amore detailedmodel forWnt signaling. Twoheaded arrows indicate
reversible reactions and one-headed indicate irreversible reactions. Dashed ar-
rows indicate reactions that have other mediators of the reactions. From Lee,
et al., PLoS Biology, 1, 116–132, 2003.

This is a complicated picture. Our goal is to mathematize this picture using the
principle ofmass actionwe talked about in the last lecture, getmeasured or estimated
values for the parameters in the dynamical equations, and compute how changes in
Wnt levels affect transcriptional activation.

3.3 Mathematizing the cartoon

As is often done in the study of signal transduction networks, mass action kinetics
are used to model the dynamics. Recalling from last lecture, the rate of a chemical
reaction is proportional to the product of the concentrations of the chemical species
involved. The constant of proportionality is called the rate constant. Importantly,
mass action kinetics do not consider individual reactant molecules, only concentra-
tions of them. Bear in mind also when mass action is valid based on the assump-
tions we made when deriving it. When the number of reactants are small, or indeed
their production is inherently stochastic, as in bursty gene expression, we should
instead use stochastic simulation. Because we are not taking into account spatial ar-
rangements of the molecules in our mass action treatment, are are implicitly making
a well-mixed assumption, meaning that the concentrations are spatially homoge-
neous, or at least effectively so. Clearly, phosphorylatedDishevelled is not uniformly
distributed in space, since it localizes to Frizzled/LRP on the membrane. Nonethe-
less, we assume that the dynamics of diffusion and spatial organization are fast com-
pared to the chemical kinetics, so we neglect the spatial distribution of molecules.
(In future studies, we will not neglect diffusion, to interesting consequences.)
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Despite all of these caveats, mass action kinetics seem to be unreasonably ef-
fective at describing measured dynamics and making testable predictions. We will
therefore employ them in mathematizing the cartoon of the Wnt signaling pathway.

Lee and coworkers write dynamical equations for the entirety of the cartoon,
making simplifying assumptions along the way. For demonstration purposes, we
will mathematize only the -catenin destruction core cycle with -catenin input
and phosphorylated -catenin output. I.e., will will disconnect it from the reversible
phosphorylation of APC (reactions 4 and 5 in Fig. 3). Note that reactions 4 and 5
are obviously crucial for getting the full dynamics of Wnt signaling.

In writing the dynamical equations, we do as Lee, et al. and assign numbers for
the complexes, since “( -catenin∗/APC∗/Axin∗/GSK3)” is a bit big for a subscript!

number species

3 APC∗/Axin∗/GSK-3

8 -catenin/APC∗/Axin∗/GSK-3

9 -catenin∗/APC∗/Axin∗/GSK-3

10 -catenin∗

11 -catenin

Now we can write down the differential equations using mass action.

dc3
dt

= −k8c3c11 + k-8c8 + k10c9, (3.1)

dc8
dt

= k8c3c11 − k-8c8 − k9c8, (3.2)

dc9
dt

= k9c8 − k10c9, (3.3)

dc10
dt

= k10c9 − k11c10, (3.4)

dc11
dt

= k12 − k8c3c11 + k-8c8. (3.5)

We see that
dc3
dt

+
dc8
dt

+
dc9
dt

= 0, (3.6)

which implies that the quantity c3 + c8 + c9 is conserved. This makes sense, since
this is the total amount of APC/Axin/GSK-3 present. We will call this conserved
quantity cA.
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3.3.1 The unique steady state

We can solve for the steady state of this system of ODEs by setting the time deriva-
tives equal to zero and solving. We can subtract equation (3.1) from equation (3.5)
and solve to get that c9 = k12/k10 at steady state. Then, using equations (3.2) and
(3.4), we get c8 = k12/k9 and c10 = k12/k11 at steady state. We then find that at steady
state

c3 = cA − c8 − c9 = cA − k12

k9
− k12

k8
. (3.7)

We finally can solve for c11 at steady state to get

c11 =
k12

k8

(
1− k-8

k9

)(
cA − k12

k9
− k12

k8

)−1

. (3.8)

So, we have found a unique steady state. That the steady state exists and is unique
is a useful piece of information in and of itself. We have also found that the steady
state values of all species depend on the production rate of -catenin, k12.

3.3.2 Numerical solution

Asystemof linearODEs is easily solvednumerically using .
In solving the ODEs, we take an initial condition of no -catenin at all in the system,
starting only with Axin complex. The total concentration of Axin complex is con-
served, with a level of 50 nM, as given in the Lee, et al. paper. We take all other
parameters as those reported in the paper as well. The two parameters that are not
reported there are k-8 and k12. (Actually, k8 is not reported either, but Kd,8 = k-8/k8

is reported.)

It is easiest to see the effects of varying k12 and k-8 using interactive plotting. To
do this, I used the Python code below, which can be downloaded here. To get the
interactive plot, input

at the command line. Then, open a web browser and go to the address

.

You will need to have a working Python 3 distribution with NumPy, SciPy, Pandas,
and Bokeh (v. 0.12.3 or higher) installed.
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A sample of the plot is shown in Fig. 4. In moving the sliders in the interac-
tive plot, we see that k12 serves to set the scale of -cat and -cat∗ concentrations.
Varying k-8 sets the total amount of -catenin. Interestingly, for these parameter
values, the concentrations of all Axin-associated complexes is essentially constant.
We could make this approximation in the dynamics and get simplified equations for
the kinetics.

Figure 4: The dynamics of the major species in the -catenin destruction cycle
with all parameters as given in Lee, et al., and k-8 = 1 min−1 and k12 = 100
(nM-min)−1.
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6 Reaction-diffusion based patterns

Wehave talked about the specifics of aWnt andDelta-Notch signaling, and the paper
we read thisweek dealswith bonemorphogenic protein (BMP) signaling. In order for
biochemical signals to shape an organism, the signaling molecules themselves4 need
to be distributed in a spatially inhomogeneous way. It is not difficult to imagine that
the biochemical cues would operate in a concentration-dependent manner; higher
concentrations result in stronger signals than lower concentrations. Such chemical
species, which determine cell fate in a developmental context in a concentration-
dependent way, are calledmorphogens.

For this lecture, we will discuss reaction-diffusion mechanisms for generating
spatial distributions of morphogens. This is important both practically, and histor-
ically. Before we proceed in this lecture, I will highlight a couple things we will not
cover. First, we will more carefully derive the reaction-diffusion equations when
we get to our lectures on continuum mechanics, so we will more or less state them
without proof here. Second, we will focus on a specific type of pattern, called Turing
patterns, that arise from reaction-diffusionmechanisms. Wewill not talkmuch about
a scaled morphogen gradient that is the subject of the Ben-Zvi et al. paper, but the
fundamental mechanism, simply having diffusing and reacting species, is the same.

6.1 Turing’s thoughts on reaction-diffusion mechanisms for morpho-
genesis

In my favorite paper of all time, Alan Turing (yes, that Alan Turing) laid out a pre-
scription for morphogenesis. He described what should be considered when study-
ing the “changes of state” of a developing organism. Turing said,

In determining the changes of state one should take into account:

(i) the changes of position and velocity as given byNewton’s laws ofmotion;

(ii) the stresses as given by the elasticities and motions, also taking into ac-
count the osmotic pressures as given from the chemical data;

(iii) the chemical reactions;

(iv) the diffusion of the chemical substances (the region in which this diffu-
sion is possible is given from the mechanical data).

He proceeded to state, a few lines later, “The interdependence of the chemical and
mechanical data adds enormously to the difficulty, and attention will therefore be
confined, so far as is possible, to cases where these can be separated.”

4Note that these cues could even have trivial signaling pathways; they can be transcription factors
themselves.
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In the second half of the class, we will attempt this enormously difficult task of
bringing together the chemical and the mechanical. For now, though, we will con-
sider only chemical reactions and diffusion, and we will see that these together can
produce patterns useful in development.

6.2 Reaction-diffusion equations for a single component

The reaction-diffusion equations are just statements of conservation of mass. We
will get into conservation laws in more depth later in the course, but for today we
will take the equation describing the continuum conservation law as given.

Consider a chemical species i with diffusion coefficient Di. Recall that the diffu-
sion coefficient has dimension of L2/T, or length squared over time. Its concentra-
tion, a function of position x and time t, is ci(x, t). Then, the flux of species i in the
x-direction due to diffusion, ji is given by Fick’s First Law,

ji = −Di
∂ci

∂x
. (6.1)

In investigating this equation, we see that flux has units of number of particles per
area per time, N/L2T. So, a flux, sometimes referred to as a current, is the number
of particles that pass through a unit cross sectional area per unit time.

As we will derive in our discussions on continuummechanics, the rate of change
of concentration per unit time due to diffusion is given by the derivative5 of the flux,
as given by Fick’s Second Law.

∂ci

∂t
= Di

∂2ci

∂x2
. (6.2)

This functional form makes sense intuitively. Imagine there is a local area of high
concentration. By diffusion, the concentration at this point will drop, and it will rise
away form the high concentration region. The second derivative of the concentration
profile at the peak is negative, so the time derivative is also negative, which means
that the concentration decreases there. The second derivative is positive away from
the peak, so the concentration will rise in those regions.

Let ri(ci) be the rate of production of species i by chemical reaction. Then, the
rate of change of ci due to chemical reaction is

∂ci

∂t
= ri(ci). (6.3)

Now, if we couple the chemical reactions with diffusion, we get

∂ci

∂t
= Di

∂2ci

∂x2
+ ri(ci). (6.4)

5Actually, in 3D, the divergence.
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This generalizes to two or three dimensions and multiple species.

∂ci

∂t
= Di ∇2ci,+ri(c), (6.5)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (6.6)

in three dimensional Cartesian coordinates, for example, and c is an array of the con-
centrations of all biochemical species.

6.3 Example: the Bicoid gradient

Bicoid was the first morphogen discovered. This morphogen can bind both DNA
and RNA and is involved in transcriptional and translational regulation. It is present
in high concentrations at the anterior regions of aDrosophila embryo and decays away
aswemove toward the posterior. It it thought that the gradient is set up by a reaction-
diffusion process. In the most commonly used model, the reactions are simple.

1. Bicoid degrades with some characteristic degradation rate, .

2. Bicoid mRNA is tightly localized to the anterior of the embryo. Bicoid pro-
tein is continuously produced from this localizedmRNA. To take into account
the production and localization, we write this part of the chemical reaction as
q0f(x), where f(x) is a dimensionless function describing the localization of the
bicoid mRNA and therefore the Bicoid source.

Thus, r(c, x) = − c+q0f(x). As already implied by our definition of Bicoid produc-
tion, we will study this system in one dimension. The complete reaction diffusion
equation is then

∂c
∂t

= D
∂2c
∂x2

− c + q0f(x). (6.7)

Ifwe are interested in the steady stateBicoid concentrationprofile, we set∂c/∂t =
0, giving

∂2c
∂x2

−
D

c = −q0
D

f(x). (6.8)

Let =
√

D/ be the characteristic length scale and let x̃ = x/ . We then have

∂2c
∂x2

− c = −q0 f(x̃). (6.9)
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Importantly, when we nondimensionalize this way, we see that q0/ sets the scale
of the concentration profile. We see further that, provided the source of Bicoid is
sufficiently localized, is the only length scale in the problem and therefore must
set the scale of the concentration gradient.

We can solve this equation in Fourier space as

ĉ(k) =
q0 f̂(k)

1+ k2 . (6.10)

We can then easily solve this numerically with FFTs. We have only to specify f(x̃).
We will choose f(x̃) = 1 − (x̃ − a), where (x) is the Heaviside step function. In
other words, we assume that the bicoid mRNA is localized in a region of size a at the
anterior, given a source of Bicoid protein of width a.

The result is shown in Fig. 12 with a = 0.1 (remember, this is in units of .). The
code used to generate the figure follows.

Figure 12: The gradient of Bcd. Note the style of the plot. This is useful for
presentations. The Python code will help you generate such figures for your
own talks.
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This method of modeling the source of Bcd is useful, but another commonly
used method is to consider a constant flux of Bcd at the anterior. In this case, the
dynamical equations for the profile are

∂c
∂t

= D
∂2c
∂x2

− c, (6.11)

j(x = 0) = −D
∂c
∂x

= j0. (6.12)

At steady state, we have

D
∂2c
∂x2

− c = 0, (6.13)

which has solution

c(x) = c1e−x/ + c2ex/ , (6.14)
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with again =
√

D/ , and c1 and c2 being constants of integration. Since in a very
large system the concentration must be bounded, c2 = 0. We use the specified flux
boundary condition to find c1.

j0 = −D
∂c
∂x

∣∣∣∣
x=0

=
c1D , (6.15)

which gives c1 = j0/
√

D . Thus,

c(x) =
j0√
D

e−x/ , (6.16)

the same form as before.

6.4 Scaling of the Bcd gradient

Note that the reaction-diffusion mechanism we considered for the Bicoid gradient
does not allow for scaling. A system exhibits scaling, or is scale invariant, if the pat-
tern does not change if the overall system size changes. Think of it like this: imagine
a two-dimensional square zebra and another one twice its size. If the mechanism
that generates stripes exhibits scaling, these two zebras will have the same number
of stripes. Similarly, flags scale; a tiny American flag has the same pattern as a giant
one.

Mathematically, if we non-dimensionalized x by the total length of the system
(organism), then the length would not appear at all in the system. Clearly this is not
the case for the proposedmodel of Bicoid, since the natural length scale is . Indeed,
defining x̃ = x/L, we have

c(x̃) =
j0√
D

e−x̃L/ , (6.17)

with L appearing explicitly in the concentration profile.

In the Ben-Zvi paper, the authors discuss a mechanism for scaling of a similar
gradient, that of BMP in dorsal-ventral patterning in a Xenopus embryo. In your
homework, you will explore other means of scaling.

6.5 Reaction-diffusion equations for multiple components

As mentioned before, the equations for reaction-diffusion dynamics generalize to
multiple components. Let c = {c1, c2, . . .} be the concentrations of each of n total
species. Then, we can write

∂ci

∂t
= Di ∇2ci,+ri(c). (6.18)
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Here, we have assumed that the diffusion of each species is independent of that of
all others. The chemical reaction rates, though, may depend on other species.

In the study of many signaling studies, authors often make the well-mixed ap-
proximation, andneglect the diffusion termand any spatial dependence on the chem-
ical components. In the next section, wewill seewhat beautiful patterns emerge from
reaction-diffusion with two chemical species. These patterns are calledTuring pat-
terns.

6.6 Turing patterns two-component R-D systems

Consider two chemical species that can undergo diffusion in one dimension (for sim-
plicity). Then, the reaction-diffusion equations for these species are

∂a
∂t

= Da
∂2a
∂x2

+ ra(a, s), (6.19)

∂h
∂t

= Ds
∂2s
∂x2

+ rs(a, s), (6.20)

where we have denoted the concentration of the two species to be a and s. To have a
concrete example in mind, since this often helps understanding, we will take

ra = a2s − a (6.21)

rs = − a2s (6.22)

Thismeans that a serves as an activator and s is an inhibitor. We can see this but look-
ing at each term. The a2s term means that a is catalyzes its own production, but
needs a substrate enzyme to do so. The appearance of the − a2s term means that
the substrate is consumed in this process. The activator undergoes autodegradation
(the − a term), and the substrate is produced at a constant rate . We could in-
clude autodegradation of the substrate, but we assume that that process is very slow
compared to the other processes at play and neglect it for simplicity. This model is
called the activator-substrate depletion model, or ASDM.

6.6.1 Nondimensionalization

In studying dynamical systems, it is almost always a good idea tonondimensionalize
them. In general, we can choose a units of time to be so that we can nondimension-
alize time, t̃ = t/ . We nondimensionalize position x as x̃ =

√
Ds (a similar length

scale that appeared in the Bicoid example). Then, the reaction diffusion system can
be written as

∂a
∂ t̃

= d
∂2a
∂x̃2

+ ra(a, s), (6.23)
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∂s
∂ t̃

=
∂2s
∂x̃2

+ rs(a, s), (6.24)

where the tildes represent dimensionless quantities and d ≡ Da/Ds is the ratio of the
diffusive rates of the activator and substrate. This already shows us that the ratio of
the diffusion coefficients will be an important parameter.

We are free to choose how we nondimensionalize the concentrations of the acti-
vator and substrate to get fully nondimensional dynamical equations. It is convenient
to nondimenionalize using = 1/ , a = ã/ , and s = 2s̃/ .

Thus, we can write the reaction-diffusion equations as

∂a
∂t

= d
∂2a
∂x2

+ a2s − a (6.25)

∂h
∂t

=
∂2s
∂x2

+ (1− a2s), (6.26)

where = 2 /k3 and we have dropped the tildes for notational convenience,
knowing that all variables and parameters are dimensionless. Conveniently, we have
gone from five parameters down to two.6 So, the dynamics are governed by only two
parameters, the ratio of the diffusion coefficients, d, and the ratio of production to
degradation rates .

Going forward, in the general treatment of the two-component system, we will
assume everything is properly nondimensionalized and write our dynamical equa-
tions as

∂a
∂t

= d
∂2a
∂x2

+ ra(a, s), (6.27)

∂s
∂t

=
∂2s
∂x2

+ rs(a, s). (6.28)

6.6.2 Homogeneous steady state

The reaction-diffusion system is at steady state when the time derivatives are zero.
A steady state is homogeneous when the spatial derivatives are also zero. This just
means that the concentration of all chemical species are spatially uniform. A homo-
geneous steady state (a0, s0) then satisfies ra(a0, s0) = rs(a0, s0) = 0. For theASDM,
the homogeneous steady state is a0 = s0 = 1 and is unique.

6We could actually arrive at the same dimensionless equations if we had a different values, say
a and s, for production of activator and depletion of substrate, bringing the parameter count from

six down to two.
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6.6.3 Linear stability analysis

Imagine the system is in the homogeneous steady state. What happens to this system
if it experiences a small perturbation? This question can be addressed using linear
stability analysis.

Let us expand both sides of our dynamical equations in a Taylor series about
(a, s) = (a0, s0).

∂

∂t
(a0 + a) = d

∂2

∂x2
(a0 + a) + ra(a0, s0) + ra,a a + ra,s s + · · · , (6.29)

∂

∂t
(s0 + s) =

∂2

∂x2
(s0 + a) + rs(a0, s0) + rs,a a + rs,s s + · · · , (6.30)

where a = a − a0 and s = s − s0. We also defined

ra,s =
∂ra

∂a

∣∣∣∣
a0,s0

, (6.31)

with other parameters similarly defined. Now, ra(a0, s0) = rs(a0, s0) = 0, since
(a0, s0) is a homogeneous steady state, and all derivatives of a0 and s0 are also zero.
Then, to linear order in the perturbation ( a, s), we have

∂ a
∂t

= d
∂2 a
∂x2

+ ra,a a + ra,s s, (6.32)

∂ s
∂t

=
∂2 s
∂x2

+ rs,a a + rs,s s. (6.33)

We can write the spatial variation in the perturbation as a Fourier series, with
mode k being ak(t)eikx. Then the dynamical equation for mode k is

d ak

dt
= −dk2 ak + ra,a ak + ra,s sk, (6.34)

d sk

dt
= −k2 + rs,a ak + rs,s sk. (6.35)

This can be written in matrix form as

d
dt

(
ak

sk

)
= A ·

(
ak

sk

)
, (6.36)

where

A =

⎛

⎝
−dk2 + ra,a ra,s

rs,a −k2 + rs,s

⎞

⎠ (6.37)
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is the linear stability matrix. This is now a linear system of equations and the solu-
tion is

(
ak

sk

)
= c1v1e 1t + c2v2e 2t, (6.38)

where 1 and 2 are the eigenvalues of A and v1 and v2 are the eigenvectors. So, if
the real part of one of the ’s is positive, the kth mode of the perturbation will grow
over time.

Remember that for a 2× 2 matrix, the eigenvalues are

=
1
2

(
trA±

√
tr2A− 4detA

)
. (6.39)

So, the real part of the largest eigenvalue is negative if the trace of the linear stability
matrix is negative and its determinant is positive. Otherwise, the largest eigenvalue
has a positive real part and the homogeneous steady state is not stable and patterns
or oscillations can spontaneously emerge.

6.6.4 Consequences of linear stability analysis

We can write the trace and determinant explicitly.

trA = −(1+ d)k2 + ra,a + rs,s, (6.40)

detA = dk4 − (ra,a + drs,s)k2 + ra,ars,s − ra,srs,a. (6.41)

In the absence of spatial information (and therefore diffusion), the trace is negative
if and only if at least one of ra,a and rs,s is negative. This means that chemical re-
action system by itself is stable. Interestingly, the trace is maximal for the zeroth
mode, which means that an instability arising from the trace becoming positive has
the zeroth mode as its fastest growing. If the determinant is positive at the onset of
the instability (when the trace crosses zero), the eigenvalues are imaginary, which
means that the zeroth mode is oscillatory. This is called a Hopf bifurcation.

For patterning in a developmental context, we want stable chemical reaction sys-
tems, and we would like patterns to be emergent as the organism grows. Note that
the size of the embryo sets which values of k are allowed; the organism has to be big
enough to fit the modes. So, an organism grows long enough to fit a mode for which
the eigenvalue is positive, and then patterns spontaneously emerge. So, we gener-
ally do not want a Hopf bifurcation in development, which means that a necessary
condition is that at least one of ra,a or rs,s is negative.

Now, the requirement that the chemical reaction system is stable in the absence
of spatial information implies that ra,ars,s − ra,srs,a > 0. The determinant is convex

44



and quadratic in k2, so it has a minimum when

∂2

∂k2 detA = 2dk2 − ra,a − drs,s = 0. (6.42)

Therefore, the fastest growing mode in the instability is given by

k2
0 =

ra,a + drs,s

2d
. (6.43)

This minimum occurs for real k0 only in the presence of positive feedback, or, in
chemical terms, if at least one of the species is autocatalytic, meaning that either
ra,a > 0 or rs,s > 0 or both. We determined earlier that the condition of stable
chemical reactions implies that at least one of these terms is negative, so we now
have that exactly one must be positive and one must be negative. We arbitrarily pick
ra,a to be autocatalyic (hence the name, “activator”).

6.6.5 Linear stability analysis for the ASDM

For the ASDM, we have ra,a = ra,s = 0, rs,a = −2 , and rs,s = − , giving

A =

⎛

⎝
1− dk2 1

−2 − − k2

⎞

⎠ . (6.44)

The trace and determinant are

trA = −(1+ d)k2 + 1− (6.45)

detA = (dk2 − 1)( + k2) + 2 = dk4 − (1− d )k2 + . (6.46)

So, in order to avoid theHopf bifurcation, we need > 1. The fastest growingmode
is

k2
0 =

1− d
2d

. (6.47)

For k0 to be real, we must have d/ < 1. Since > 1, the condition for a Turing
instability is that d < 1. This can be shown to be the case in general, not just for the
ASDM. So, we have summarized the requirements for a Turing instability.

1. One species is autocatalytic (ra,a > 0) and one is inhibitory (rs,s < 0).

2. The inhibitory species (in theASDMmodel, this is the substrate)must diffuse
more rapidly than the activating species.

The intuition here is that the activator starts producingmore of itself locally. The
local peak starts to spread, but the inhibitor diffuses more quickly that pins the peak
of activator in so that it cannot spread. This gives a set wavelength of the pattern of
peaks.
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6.6.6 Turing patterns do not scale

Turing patterns, such as those generated by the ASDM, do not scale because the
wavelength of the pattern, given by the fastest growing mode, k, is independent of
system size. So, if a system is twice as large, it would have twice as many peaks and
valleys in the pattern.
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