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10 Continuum mechanics II: conservation of momentum

10.1 Conservation of linear momentum

Recall the general conservation law,

∂t = −∂i j i. (10.1)

Let’s take = vi, the linear momemtum density. The total linear momentum of a
volume element is

∫
dV vi, so taking = vi means that we are describing a con-

servation law for linear momentum. In this case, ∂t( vi) is a rank one tensor, so the
flux must be a rank two tensor. We will denote this flux as ij, the total momentum
flux tensor. It is the flux of momentum density coming out of a volume element.
The statement of conservation of linear momentum, called the equation of motion,
is

∂t vi = −∂j ij. (10.2)

Now, we can split the total momentum flux tensor into two pieces. First, we have
the momentum flux due to material flowing in and out of the volume element. This
is vivj. The second part of the total momentum flux is all the other stuff, which we
will denote by ij. This object, ij, is called the stress tensor.

ij = vivj + ij. (10.3)

Therefore, we have

∂t vi = −∂j vivj − ∂j ij. (10.4)

Now, we will apply the chain rule to terms on both sides of this equation.

∂tvi + vi∂t = − vj∂jvi − vi∂j vj − ∂j ij. (10.5)

Rearranging, we get

(∂t + vj∂j)vi = −vi[∂t + ∂j vj]− ∂j ij. (10.6)

The parenthetical termon the left hand side is thematerial derivative. The bracketed
term is zero by conservation of mass, cf. equation (9.20). Thus, we arrive at our
statement of conservation of linear momentum.

dvi

dt
= −∂j ij. (10.7)
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10.2 Physical interpretation of the stress tensor

The stress tensor describes forces resulting from relative motion of a material. It has
units of force per area, or momentum flux. To see this, note that momentum has
dimension of ML/T. A flux introduces dimension of 1/L2T. Putting it together, the
stress has units of M/LT2, or force per area.

To understand how it describes forces due to relative motion consider for exam-
ple the case where part of the material moves left and another part moves right, we
have a stretching motion. The material pulls in resistance to this motion. The com-
ponent of the stress tensor describing resistance to this mode of relative motion is

xx.

10.3 Constitutive relations

This is all fine and good, but can we write a mathematical expression for ij so that
we can put it to use? An expression for the stress tensor is called a constitutive rela-
tion. A constitutive relation relates physical quantities in amaterial-specificway. We
already saw a constitutive relation in the last lecture, Fick’s first law, which relates
diffusive flux to a concentration gradient, jki = −MkDk∂ick.

We stated Fick’s first law without proof, and in general, the derivations consti-
tutive relations are often nontrivial. We will explore constitutive relations in the this
and the next lecture and explore their meanings.

10.4 Constitutive relation for a homogeneous elastic solid

We first consider a homogeneous elastic solid. The stress tensor is given in terms in
the strain tensor, which we will first characterize.

10.4.1 Elastic strain tensor

We define by xi the position of a piece of the solid in space. We then deform the
solid such that that same piece is now at position x′i. We define the displacement,
ui = x′i − xi. If an object changes shape, then the displacement varies across the
solid. If ui is constant across the solid, the solid is not being deformed; rather, it is
being translated in the direction of ui. However, if ui varies in space, we do have a
deformation. So, the quantity ∂iuj reflects local deformations in the solid.

To investigate themagnitude of deformations, we consider the differential squared
distance between neighboring points in the solid.

dℓ2 = dxi dxi. (10.8)
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If we have a deformation, this distance changes by

dℓ′2 = dx′i dx′i. (10.9)

To get an experession for dx′i, we can use the chain rule.

d(x′i − xi) = dui = (∂jui)dxj, (10.10)

which gives

dx′i = dxi + (∂jui)dxj. (10.11)

Then, we have

dℓ′2 = (dxi + (∂jui)dxj) (dxi + (∂kui)dxk)

= dxi dxi + (∂jui)dxj dxi + (∂kui)dxk dxi + (∂jui)(∂kui)dxj dxk

= dℓ2 + [∂iuj + ∂jui + (∂iuk)(∂juk)] dxi dxj, (10.12)

where in the last line we have renamed indices to collect terms multiplying dxi dxj.
We can write this down as

dℓ′2 − dℓ2 = 2 ij dxi dxj, (10.13)

where we have defined the strain tensor as

ij =
1
2
(∂iuj + ∂jui + (∂iuk)(∂juk)) . (10.14)

The last term in the strain tensor is small for small displacements, so we have, to
linear order in ∂iui,

ij ≈
1
2
(∂iuj + ∂jui). (10.15)

10.4.2 Elastic stress tensor

We have established that the strain describes deformations of the solid. We can de-
rive a relationship between the stress tensor, which describes the forces necessary
to achieve the deformations, using thermodynamic arguments. Instead, we will just
start with Hooke’s law, which is valid for small deformations. As Hooke said, “ut
tensio sic vis,” or the force is proportional to extension. Because the stress tensor is a
rank 2 tensor, as is the strain tensor, to write a linear relationship between the two,
most generally, we need a rank 4 tensor.

ij = Cijkl kl. (10.16)
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There are 34 = 81 entries in the tensor Cijkl. This looks really intimidating, but
by symmetry arguments, we can show that the entries are not all independent. For
example, because the strain tensor ij is symmetric, ij = ji. The stress tensor must
also show this symmetry, so therefore so must Cijkl. This implies that Cijkl = Cjikl =
Cijlk. We will not go through all of the symmetry arguments here, but in the end, we
find that there are only two independent parameters. Generally, it can be shown that
a linear relationship between two rank 2 symmetric tensors that remains invariant
under change of coordinates has the form

ij = kk ij + 2 ij, (10.17)

where the constants and are called the Lamé coefficients. This gives us our
constitutive relation for an elastic solid.

As is commonly done, is is convenient towrite the Lamé coefficients in a different
form. We define

=
E

(1+ )(1− 2 )
, (10.18)

=
E

2(1+ )
, (10.19)

where E is called the Young’s modulus and is the Poisson ratio. The resulting
expression for the stress tensor is

ij =
E

1+

(
ij + 1− 2 kk ij

)
, (10.20)

The second law of thermodynamics dictates that E ≥ 0 and−1 ≤ ≤ 1/2 (which
we will not derive here). Thus, the stress associated with an elastic deformation is of
order E .

10.4.3 Equation of motion for an elastic solid

Now that we have our constitutive relation, we canwrite the equation ofmotion from
the statement of conservation of linear momentum. The local velocity, vi, is related
to the displacement as vi = ∂tui. Thus, we can write

dvi

dt
=

(
∂2

t ui + (∂tuj)∂j∂tui
)
= −∂j ij, (10.21)

where the t’s denote time derivatives and are not summed over. Evidently, this is
a wave equation in the displacement. The dynamics describe elastic waves through
the solid. We know these waves as sound. The dynamics are usually very fast com-
pared to biological time scales of interest, so we usually neglect the left hand side of
the equation of motion. Typically with elastic solids, we will study only statics, as
governed by the constitutive relation itself, in this case, equation (10.20).
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10.5 Constitutive relation for an isotropic viscous fluid

If we look at the expression for the elastic stress, we see that it scales like the displace-
ment, ∼ E . For a fluid, we would not expect this to be the case. If we displace
a fluid and then let it rest, we do not have to exert any more force to maintain the
displacement. Instead, we expect that the stress we need to exert on a fluid to move
it will be related to the rate at which we make deformations,

∂t∂iuj = ∂i∂tuj = ∂ivj, (10.22)

where vj = ∂tuj is the velocity at which the material is moving. In other words, if we
want to move a fluid more rapidly, it will require more force than to move it slowly.
The actual magnitude of the displacement will not matter; only the rate at which we
make displacements. The velocity gradient tensor can be written as

∂ivj =
1
2
(∂ivj + ∂jvi) +

1
2
(∂ivj − ∂jvi) =

1
2
(vij + ij). (10.23)

Here, we have defined

vij ≡
1
2
(∂ivj + ∂jvi) (10.24)

as the symmetric part of the velocity gradient tensor and

ij ≡
1
2
(∂ivj − ∂jvi) (10.25)

as the antisymmetric part. Due to the symmetry of an isotropic fluid and conser-
vation of angular momentum (which we will not formally consider here), the stress
tensor must be symmetric, which means that ij does not contribute to it.

We might also expect the stress to include the hydrostatic pressure, p. After all,
pumps move fluids around by exerting pressure on them. So, we additionally have a
−p ij term in the stress tensor. For an isotropic viscous fluid, then, we have

ij = −p ij + Cijklvkl. (10.26)

Again, we use the fact that a linear relationship between two rank 2 symmetric ten-
sors that remains invariant under change of coordinates can be written with Lamé
coefficients.

ij = −p ij + vkk ij + 2 vij. (10.27)

We will define and v such that = and = ( v − 2 )/3. Then, we have

ij = −p ij + 2
(

vij −
vkk

3 ij

)
+ v

3
vkk ij. (10.28)

The quantity is called the viscosity, or shear viscosity, and v is called the bulk
viscosity. It is clear that v determines the contribution of isotropic compression
to the stress. For am incompressible fluid, the continuity equation (9.23) gives that
vkk = ∂kvk = 0, so the stress tensor is

ij = −p ij + 2 vij = −p ij + (∂ivj + ∂jvi). (10.29)
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10.6 Equation of motion for an incompressible isotropic viscous fluid

Now thatwehave the constitutive relation, we canwrite down the equation ofmotion
for an incompressible isotropic viscous fluid. This is the statement of conservation
of linear momentum.

dvi

dt
= −∂j ij = ∂ip − ∂j∂jvi, (10.30)

This equation, together with the continuity equation, ∂ivi = 0, are known as the
Navier-Stokes equations. We can nondimensionalize this equation, choosing x =
ℓx̃, t = t̃, vi = Uṽi, and p = p̃ U/ℓ. Here, ℓ and are respectively length and time
scales of interest, and U is the characteristic velocity. The resulting equation is

ℓ2
∂tṽi +

Uℓ
ṽj∂jṽj = ∂ip̃ − ∂j∂jṽi, (10.31)

where the derivatives are now over dimensionless variables. We can collect the con-
stants to define dimensionless parameters, the Reynolds number, Re = Uℓ/ ,
and the Strouhal number, Sr = (ℓ/U)/ .

Re (Sr ∂t + ∂jṽj) ṽi = ∂ip̃ − ∂j∂jṽi. (10.32)

The Reynolds number is the ratio of the inertial energy, U2ℓ3, to the energy loss
due to viscous dissipation, Uℓ2. The Strouhal number is the ratio of the advective
time scale, ℓ/U to any other pertinent time scale of interest, . If Re ≪ 1 and
Re Sr ≪ 1, then the left hand side of the equation ofmotion is negligible compared to
each term in the right hand side. In cell and developmental biology, this is generally
the case. To satisfy us that this is indeed the case, we can estimate the Reynolds
number for processes in a developing embryo. The density of our material is close
to that of water, or 103 kg/m3. The smallest viscosity is that of water, which is about
10−3 kg-m/s. The longest length scale we generally consider in early embryos is
about 1 mm = 10−3 m. The fastest speeds could conceivably be that of the fastest
motor proteins, about 100 µm/s = 10−4 µm/s. Putting this together gives a Reynolds
number of Re = 0.1. We have intentionally overestimated this, since most fluid-like
embryonic movements more more slowly, over shorter distances, and with much
higher viscosity. So, we are generally justified in neglecting the left hand side of the
equation of motion, and we have

∂j ij = 0. (10.33)

We will talk in more depth about dynamics of isotropic incompressible viscous
fluids at low Reynolds number when we study the He, at al. paper toward the end
of the course. In the next lecture, we will look at complex fluid (those that are not
isotropic, such as an actin cortex, which is comprised of filaments) and active, mean-
ing that the material can consume energy (for example via ATP hydrolysis by motor
proteins).
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