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12 Viscoelasticity and laser ablation

12.1 Linear viscoelasticity

We have so far considered the constitutive relations for an elastic solid and a viscous
fluid (including active nematic viscous fluids). However, the actomyosin cortex, be-
haves both elastically and viscously. For long time scale, it can flow, like a fluid. But if
the cortex is rapidly stressed, it behaves like an elastic solid. After all, it is what gives
the cell its shape. Further, as described in the Mayer, et al., paper, the actomyosin
cortex responds elastically when it is cut while under tension. So, it has both elastic
and viscous properties. What kind of constitutive relation describes this scenario of
a viscoelastic material?

In many cases, it is not possible to write down a constitutive relation for a vis-
coelastic material. Researchers instead rely on experimental characterization of the
material, such as a cell and its cortex, as it experiences stress.

Nonetheless, we can write down a linear theory that will (hopefully) provide
some insight and predictive power. Let us compare for a moment the constitutive
relations of an elastic and a viscous active nematic material. For simplicity, we will
assume an incompressible material with a Poisson ratio of zero. For convenience,
we will use the shear modulus, , which you can recall from equation (10.17) is the
second Lamé coefficient. It is related to the Young’s modulus by = E/2(1 + ).
In the case of zero Poisson ratio, this is = E/2.

elastic: ij + ij − 1( − L∂k∂k)Qij − aQij = 2 ij, (12.1)

viscous: ij + ij − 1( − L∂k∂k)Qij − aQij = 2 vij. (12.2)

Recall that

∂t ij =
1
2
∂t(∂iuj + ∂jui) =

1
2
(∂i∂tuj + ∂j∂tui) =

1
2
(∂ivj + ∂jvi) = vij. (12.3)

So, if we differentiate the constitutive relation for the elastic material with respect to
time, we get

∂t ( ij + ij − 1( − L∂k∂k)Qij − aQij) = 2 vij, (12.4)

which we can re-write to give

M∂t ( ij + ij − 1( − L∂k∂k)Qij − aQij) = 2 vij. (12.5)

Here, M = / is theMaxwell time, which describes the time scale for relaxation
of elastic stresses. We might, then interpolate between the two cases of elastic and
viscous materials by adding the equations together.

(1+ M∂t) [ ij + ij − 1( − L∂k∂k)Qij − aQij] = 2 vij. (12.6)
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For time scalesmuch less than M, thematerial behaves elastically, but for time scales
much longer than M, the material behaves viscously. This can be seen if we nondi-
mensionalize time by the time scale of interest, . Then, the dimensionless operator
at the front of equation (12.6) is

1+ M ∂̃t. (12.7)

If ≫ M, the second term is small and we get the constitutive relation for a viscous
fluid. If ≪ M, the second term dominates, and we get the constitute relation for
an elastic solid.

Equation (12.6) is actually not quite correct because it is not frame invariant. To
see this, let’s say that we did identical experiments on this viscoelastic material, one
in a laboratory, and one in a train car moving at constant velocity v0i . Writing the
stress tensor explicitly as a function of position and time, wehave, for the timederiva-
tive of the stress tensor in the second experiment using the chain rule,

∂t ij(xi + v0k t, t) = ∂t ij + v0k∂k ij. (12.8)

Since the equation in this experiment has terms not present in the experiment done
in the stationary lab, the governing equations are not frame invariant, which violates
Gallilean relativity. Instead, we should use the convected corotational derivative,
which preserves frame invariance, both for linear and rotational motion. The con-
vected corotational derivative of a second rank tensor is defined as

DAij

Dt
= ∂tAij + vk∂kAij + ikAkj + jkAki. (12.9)

As a reminder, ij = (∂ivj−∂jvi)/2 is the antisymmetric part of the velocity gradient
tensor. The convected corotational derivative is like the material derivative in that
it sets the frame as the co-moving, corotational frame. So, for an active nematic
viscoelastic fluid, which is solid-like at short time scales and viscous-like at long time
scales, a linear viscoelastic model gives a constitutive relation of

(
1+ M

D
Dt

)
[ ij + ij − 1( − L∂k∂k)Qij − aQij] = 2 vij. (12.10)

We will make use of this later in interpreting the laser ablation experiments in the
Mayer, et al. paper.

12.2 Analysis of cortical laser ablation experiments

In the Mayer, et al. paper, the authors used cortical laser ablation (COLA) to cut
a line in the cortex of the C. elegans embryo and observe the recoil. By comparing
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the initial velocity of the recoil of two different experiments, they could compare the
total tension present in the cortex immediately before ablation. Why is this the case?

To analyze this equation, we consider the cortex as an active nematic elastic ma-
terial. In the viscous limit, the constitutive relation (12.6) becomes

ij = − ij + 1( − L∂k∂k)Qij + aQij + 2 ij. (12.11)

We assume that the nematic order is constant in space, so ∂k∂kQij = 0.

We assume the ablation line is along the y-direction so that the response is pri-
marily along the x-direction. It is convenient, then, to write the xx-component of the
constitutive relation.

xx = − + ( 1 + a)Qxx + 2 xx. (12.12)

Note that in assuming the Poisson ratio is zero, motions in the y and z directions
do not enter into the dynamics. If we has a nonzero Poisson ratio, we could still
neglect these dynamics because yy, zz ≪ xx because the recoil is primarily in the
x-direction.

Nowwe consider the geometry. The ablation line is at position x = 0. We define
by xc to be the position of the edge of the cortex at the ablation line. Thismoves as the
cortex recoils from the ablation. For the purposes of this discussion, we will observe
the right side of the ablation site. Now, xx = ∂xux, where ux is the x-component of
the displacement of the elements of the cortex from their equilibrium positions. If
the deformation is distributed uniformly across the contracting cortex, the strain is

xx = ∂xux ≈ (xc − x0)/(ℓ − xc). Here, the numerator is the displacement of the
cortex from its equilibrium position x0, and the denominator is the total length of the
cortex. We have introduced ℓ as the total extent of the embryo. Prior to ablation,
xc = 0, so the initial strain is 0

xx = −x0/ℓ. So, for the stress, we have

xx = − + ( 1 + a)Qxx +
2

ℓ− xc
(xc − x0). (12.13)

As the cortex initial retracts from the ablation, ℓ ≫ xc, so the stress can be approxi-
mated as

xx = − + ( 1 + a)Qxx +
2
ℓ
(xc − x0) = kxc +

0
xx, (12.14)

where we have defined a spring constant k = 2 /ℓ and 0
xx = ( 1 + a)Qxx −

2 0
xx is the stress present in the cortex immediately prior to ablation. Already we

see that the active stress is not distinguishable in the dynamics, so we will not be able
to ascertain it in an ablation experiment.

The cortex does not instantaneously achieve its new equilibrium. This is because
there is dissipation due to friction with the surrounding membrane and cytoplasm.
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The above equation constitutes a force balance, and we need to also include the fric-
tional force. This will be proportional to the velocity of the recoil, or ∂txc. Thus, we
get

xx = kxc +
0
xx + ∂txc, (12.15)

where is the friction coefficient. With this force balance, we can study the dynam-
ics of the recoil from a COLA experiment. Upon ablation, the cortex can no longer
support stresses because the material has been destroyed, so xx = 0. Thus, we take

xx(t) = 0
xx(1 − (t)), where (t) is a unit step function. Then, we are left with

the ODE

∂txc = −kxc − 0
xx +

0
xx(1− (t)) = −kxc − 0

xx (t). (12.16)

If the ablation happens at time t = 0, then for t < 0, we have ∂txc = 0, since
xc(t = 0) = 0. For t > 0, we have

∂txc = −kxc − 0
xx. (12.17)

This first order linear differential equation is solved to give

xc(t) = c e−kt/ −
0
xx

k
(12.18)

where c is a constant of integration. We match to the initial condition that xc = 0 to
get that c = 0

xx/k. Thus, we have

xc(t) =
0
xx

k
(1− e−kt/ ). (12.19)

The outward velocity of the bleeding edge of the ablation is then

v(t) = ∂txc =
0
xx e−kt/ . (12.20)

So, the initial outward velocity is 0
xx/ , which is proportional to the total x-directional

stress that was present in the cortex immediately prior to ablation. We cannot access
the value of 0

xx because we do not know what is. And, as mentioned before, we
also cannot tell how much of the total stress is due to active stress. However, we can
compare experiments to see the relative magnitudes of the total stress present in the
cortex. Further, if is the same across experiments, which we would expect it to be,
the decay of the outward velocity is proportional to the stiffness (the Young’s mod-
ulus) of the cortex. We note, though, that this result is only valid for times shortly
after the ablation, because the cortex is viscoelastic, so it loses its elastic character
at longer times. Furthermore, the C. elegans cortex has a wound-healing response at
longer times as well.
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