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13 Viscous flows in development

In theHe, et al. paper, wewill study viscous flows in the context of apical constriction
in ventral furrow formation in Drosophila development. In contrast to the cortical
flows we studied in the Mayer, et al. paper, here we are dealing with passive fluids,
as opposed to the active cortex. Like in theMayer, et al. paper, the flowing material,
consisting of the cells whose apical surface is constricting and the yolk plasm below,
is viscous on the time scale involved with the flow. Unlike the cortex, the material
has no polar or nematic order; it is isotropic. Furthermore, it has no active stresses.

13.1 Dynamical equations of Stokes flow

An isotropic viscous fluid has a stress tensor given by

ij = −p ij + 2 vij = −p ij + (∂ivj + ∂jvi). (13.1)

The equation of motion, as we have seen before is

dvi

dt
= ∂j ij, (13.2)

where d/dt denotes the material derivative we have seen in previous lectures. As
we have seen before, in most developmental contexts, the Reynolds number is very
small, so the lefthand side of the equation ofmotion is effectively zero. The resulting
equation of motion is then

∂j ij = −∂ip + ∂j∂jvi = 0. (13.3)

We have used the continuity equation, ∂ivi = 0 in writing this, and have made the
assumption that the viscosity is constant. Flow described by these equations is
called Stokes flow, named after George Stokes, who was a pioneer in the study of
low Reynolds number fluid dynamics.

13.2 Qualitative features of Stokes flow

Now that we have the equations governing Stokes flow, we canmake some very pow-
erful qualitative statements about Stokes flow.

1. The Stokes equations are linear. Therefore, for a given set of boundary condi-
tions, the velocity field is unique. This is not true for flows with Re > 0.

2. There is no time present in the Stokes equations, except possibly for time-
dependent boundary conditions. This means that the flow field is set instanta-
neously by the boundary conditions. Knowledge of the flow at any other time
is unnecessary.
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3. Because the Stokes equations are linear, the dynamics are reversible. This
means that if vi is a solution of the Stokes equations, then so is −vi if the sign
of the pressure field is also flipped.

−∂i(−p) + ∂j∂j(−vi) = ∂ip − ∂j∂jvi = 0 = − (−∂ip + ∂j∂jvi) .
(13.4)

This also means that the dynamics are reversible in time. That is, if the time-
dependent boundary conditions were run in reverse, the fluid dynamics would
be exactly reversed as well.

4. Hydrodynamic forces are long-ranged. To see this, consider an object moving
through a fluid. The fluid around the objectmoves, and as a result, momentum
is carried through the fluid. The momentum flux is given by the stress tensor.
So,

momentum flux ≡ jmom ∼ ∂jvi ∼ ∂rv, (13.5)

where r is the radial distance from the translating object. We will assume a
power law dependence of the momentum flux on r,

jmom ∼ r− −1. (13.6)

The total momentum flux through any spherical shell of radius R must be the
same as any other spherical shell. The total momentum flux through a spher-
ical shell scales like jmomR2 ∼ R− +1. For this to be the same for all shells, we
must have = 1. Thus,

∂rv ∼ r−2, (13.7)

such that v ∼ r−1. So, the velocity field decays away like 1/r, in contrast to high
Reynolds number where it decays away like 1/r3. In two dimensions, the decay
is even slower, v ∼ ln r. So, hydrodynamic forces are felt over large distances.

13.3 Green’s functions for Stokes flow

Consider a point force Fi in a fluid. In this case, the governing equations are

− ∂ip + ∂j∂jvi = −Fi (xi), (13.8)

∂ivi = 0. (13.9)

The velocity and pressure fields that solve these equations are known as theGreen’s
functions. We could solve for the Green’s functions, but it is perhaps easier to “in-
vent” the solution and then verify that it works. The result is

vj =
1

8
FiGij, (13.10)
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p =
1

8
FiPi, (13.11)

where

Gij =
ij

r
+

xixj

r3
, (13.12)

Pi = 2
xi

r3
+ P∞

i , (13.13)

where r =
√

xixi and FiP∞
i is the pressure very far away from the point source. From

this expression, we see the 1/r dependence of the velocity field. Here, Gij is known
as the Oseen tensor, after the Swedish physicist Carl Wilhelm Oseen. The stress
field from the point source is Fk ijk, where

ijk = − 3
4

xixjxk

r5
. (13.14)

In two dimensions, velocity field is instead

vj =
1

4
FiGij, (13.15)

Gij = ln r ij −
xixj

r2
, (13.16)

so the decay of the velocity field is even slower than in three dimensions.

13.4 Solutions of Stokes equations using Green’s functions

He, et al. solved the Stokes equations by choosing a distribution and strength of
point forces such that the fluid flow velocity matched that what was measured at he
apical surface. In other words, the apical surface is contracting and constitutes a
moving boundary. The boundary conditions were approximated by placing points
sources that gave the right result at the boundary. Because the solution to the Stokes
equations is unique, this give the correct fluid flow. Note, however, that this crude
method does not give the correct stresses. Getting those requiresmore carefulmeth-
ods like boundary integral methods, which are beyond the scope of our discussion
here.
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