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14 The Young-Laplace law

In this lecture, we will derive the Young-Laplace law, a key result in interpreting
the Maître, et al. paper. It is also important in many contexts in considering the
mechanics of cells and tissues. It describes the relationship between surface areas of
a two-dimensional sheet (like the periphery of a cell) and pressure differences across
the surface. Along the way, we will consider a generic way to quantify the energetics
of thin elastic shells.

14.1 Energetics of curvature of an elastic sheet

We have derived the constitutive relations for a homogeneous elastic solid, given by
equation (10.20). Here, we consider a thin sheet, or shell, that is very thin along one
dimension, which we will arbitrarily choose to be the z-direction. Since it is thin in
one dimension, we would like to have a two-dimensional description of the object.

We can formally consider a piece of material that is very thin in z and derive an
effectively two-dimensional representation of the deformations. This is done, for ex-
ample, in sections 11–15 of Landau and Lifshitz Theory of Elasticity. Instead of taking
that approach, we will take a phenomenological approach based on the curvature of
the two-dimensional elastic sheet. Informally, this describes how curved the two-
dimensional surface is. To define curvature precisely, we define the positions of the
surface of a sheet with a function h(x, y). Then, the curvature tensor is

Cij = ∂i∂jh. (14.1)

A rank-two tensor is required to describe curvature of a two-dimensional object be-
cause the object may be curved in different ways along different axes. For example, a
sphere has the same curvature everywhere, but a cylinder has finite curvature along
the azimuthal direction, but infinite curvature along the axial direction.

Given the curvature tensor, we can write the deformation energy of the shell as

Edeform =

∫
dA f(Cij). (14.2)

Here, f(Cij) is an energy per area associate with the local curvature. We write f(Cij)
as a Taylor series in the curvature tensor to second order.

f(Cij) ≈ a0 + a1Ckk + a2(Ckk)
2 + a3CikCik. (14.3)

Note thatCkk is the trace of the curvature tensor, whichwedefine asCkk = 2H, where
H is called the mean curvature. We call it that because the principle curvatures
(which we will call C1 and C2) are the eigenvalues of the curvature tensor, and the
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mean of these curvatures is half the trace. That is, H = (C1 + C2)/2. (Remember,
the trace is equal to the sum of the eigenvalues.)

Now, for a 2×2 tensor, CijCij = (2H)2 − 2K, where K ≡ C1C2 is called the
Gaussian curvature. So, we only two independent curvature parameters, the mean
curvature and the Gaussian curvature. We can then rewrite the areal energy density
as

f(H,K) = +
2
(2H − C0)

2 + ¯K, (14.4)

where is the bending rigidity, ¯ is the Gaussian rigidity, is the surface ten-
sion, and C0 is the spontaneous curvature. The relations to the original expansion
coefficients are

a0 = +
2

C0, (14.5)

a1 = C0, (14.6)

a2 =
+ ¯

2
, (14.7)

a3 = −
¯

2
. (14.8)

Let us pause for a moment to parse these new terms so we understand what they
mean (and also how they got their names). It will help to first write the deformation
energy.

Edeform =

∫
dA f(H,K) =

∫
dA +

1
2

∫
dA (2H − C0)

2 +

∫
dA ¯K

(14.9)

• Surface tension, : Imaginewe increased the area of the sheet by some amount.
The deformation energy due to the surface tension term grows proportionally
to the increased area. If we have two immersed liquids, increasing the interfa-
cial area results in greater interfacial energy because of surface tension. The
name, then, comes from a tension that results from increasing surface area.
This term describes the energetics of stretching deformations.

• Bending rigidity, : The bending rigidity multiplies the mean curvature.
So, the more sharply curved the sheet is, the greater the deformation energy.
The terms involving the mean curvature and the Gaussian curvature describe
bending deformations.

• Spontaneous curvature, C0: Some elastic sheets are inherently curved. A cell
membrane that has asymmetric lipid layers is an example. For a symmetric
sheet, C0 = 0, but it can be nonzero for inherently curved sheets.
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• Gaussian rigidity, ¯ : Thismultiplies theGaussian curvature, hence the name.
Wewill discuss thismomentarilywhenwe talk aboutGauss’sTheoremaEgregium
and the Gauss-Bonnet Theorem.

While we will not derive it here, Gauss’s Theorema Egregium states that the
Gaussian curvature K is invariant under isometric transformation. In other words,
the Gaussian curvature K does not change for any deformation that does not stretch
the sheet. Furthermore, the Gauss-Bonnet theorem says that

∫
dA K = 2 (S),

where (S) is the Euler-Poincaré characteristic, (S) = 2(1 − g), where g is the
genus of the surface. The genus is the number of handles, or donut holes in the
surface. A torus has g = 1; a sphere has g = 0. These two theorems together
guarantee that provided we do not stretch or introduce holes into the surface, the
quantity

∫
dA ¯K is constant, provided ¯ is constant.

14.2 Young-Laplace Law for a sphere

Consider now a sheet that is restricted to being spherical. For a sphere or radius R,
the two principle curvatures are C1 = C2 = 1/R. We will assume that , , and ¯
are all constants. We further assume the material has no intrinsic curvature. In this
case, the energy of deformation is

Edeform = 4 R2
(

+
R2 +

¯

R2

)
= 4 R2 + 4 ( + ¯). (14.10)

The differential energy of deformation is then

dEdeform = 8 R dR. (14.11)

The differential free energy of the shell, including now pV contributions is

dF = dEdeform − p dV

= 8 R dR − 4
3

p dR3

= 8 R dR − 4 R2p dR

= 4 R(2 − Rp)dR. (14.12)

As evident from the form of the total differential, the free energy is minimal when
2 = Rp, or p = 2 /R. Now, this p is really a pressure difference between the interior
and exterior of the spherical shell. So, we have

pin − pout =
2
R
. (14.13)
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This result is commonly known as theYoung-Laplace Law. But beware! This result
that holds for a sphere, where we included both stretching and bending energy, is
not general. Let us consider another example from the physics of tissues that shows
where we can run into trouble.

14.3 Squishing a balled-up tissue

In a classic experiment in the early 1990s, Foty and coworkers took living tissues from
5-6 day old chick embryos, dissociated the tissues in solution, and then allowed them
to reaggregate. The now-spherical tissue was placed between parallel plates to which
the tissue does not adhere and squished by applying force F to the top plate while the
bottom plate is fixed. The authors then observed the shape of the tissue, as shown
in Fig. 14. From the shape of the tissue, they could extract the quantities R1, R2, and
R3. The goal from the experiment is to extract the interfacial tension, , between the
tissue and the surroundings. The approach is to derive a similar Young-Laplace law
relating the pressure to the radii R1, R2, and R3, knowing that we can measure the
pressure by a force balance on the plates,

p =
F

area in contact with top plate
=

F
R2

3
. (14.14)
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shape equilibrium was denoted by the leveling oA of the
force reading [Fig. 3(a)] and confirmed by observation of
the cessation of aggregate shape change.
Following application of a compressing force, relaxa-

tion was found to be biphasic. A significant fraction of
the induced stress was dissipated within a few minutes in
all cases. Ho~ever, maximal relaxation usually took an
hour or two for liver aggregates [Fig. 3(a)] and about
eight hours for heart aggregates (data not shown). This
is in accord with the earlier characterization of such cell
aggregates, in centrifugation studies, as elasticoviscous
liquids. The rapid, elastic response to the application of a
distorting force was found to be associated with cell de-
formations, these being reversed in the course of the
longer-terra cell rearrangements that accompanied the
approach to shape equilibrium [18,19].
The surface tension of a liquid droplet compressed be-

tween parallel plates to which it does not adhere can be
obtained from the Laplace equation [20]
~(I/R, + I/R, )+P.„,=) . (1)

Here P,„tis the external pressure acting on the droplet's
surface, o is the interfacial tension between the droplet
and the immersion medium, and Ri and R2 are the two
principal radii of curvature of the droplet's surface (Fig.
4). In Eq. (1), )i, is a constant Lagrange multiplier assur-
ing the incompressibility (constant volume) of the aggre-
gate. Equation (1) in general implies a local relationship
at any given point on the boundary of the aggregate and,
as such, represents a complicated partial diA'erential

equation. If, however, the aggregate is spherical prior to
compression, as is approximately the case [see Fig. 2(a)],
it will be axially symmetric after compression (at equilib-
rium). Furthermore, we approximate the side boundaries
of the aggregate by spherical caps. Then, evaluating Eq.(1) along the upper or lower compression plates (we
neglect gravity), we obtain ).=F/nR3, where the expres-
sion on the right hand side is the external pressure due to
compression, F is the measured weight loss of the UCP in
dynes, and R3 the radius shown in Fig. 4. Once li. is
known, Eq. (1) can be evaluated at point 0 (see Fig. 4)
along the side boundary of the aggregate (where P,„i=0), with the result

o= +F 1
(2)zR3

Videorecorded aggregate profile images, representing
equilibrium shapes, were digitized, converted to eight bit
gray scale files, and transferred to a Mac Centris 650
8/230 computer for analysis. Using NIH Image soft-
ward, circles of adjustable radii were superimposed upon
and matched to the images of the aggregate's sides [Fig.
3(b)]. Very good congruence was obtained. A linear
tracing function was then used to measure Ri, Rz, and
R3. In each case, four a values were calculated, using Rq
taken from the aggregate's left and right sides and R3
taken from its upper and lo~er surfaces. These four
values were then averaged.
The results for three representative liver aggregates

and three representative heart ventricle aggregates are
shown in Table I. The greatest deviation from the mean
value was 10% in the liver group and 4% in the heart
group. An essential requirement for our analysis is that
these interfacial tensions be area invariant, characteristic
of liquid rather than of solid bodies. This means that dis-
tinct sets of the quantities F, Ri, R2, and R3 measured on
the same aggregate at diA'erent degrees of compression
should yield the same value of e. We verified this by sub-
jecting the same aggregate to two successive compres-
sions, the second greater than the first [Figs. 3(a) and
3(b)]. As shown in Table I, the values thus obtained are
consistent with the requirement for area invariance. The
results, 8.3 dyn/cm for heart ventricle and 4.3 dyn/cm for
liver, confirm the qualitative relationship oq, ,„t& ~~;„,ob-

1001im Force Force
0

R3

FIG. 3. (a) Force exerted by initially spherical chick liver
aggregate l (see Table 1) upon the upper compression plate
(load) as a function of time. After relaxation was complete, the
compressing plates were separated and the equilibrium force
determined. A second, greater compression was then initiated
and the process was repeated. (b) Profile shapes of chick liver
aggregate l, traced using N IH Image are shown before
compression was initiated and immediately preceding termina-
tion of each compression.
2300

I IG. 4. A liquid droplet compressed between parallel plates
to which it does not adhere, at shape equilibrium. Ri and R2
are the two primary radii of curvature, respectively, in the plane
of and normal to the droplet's axis of symmetry. R3 is the ra-
dius of the droplet's circular area of contact with either com-
pression plate.

Figure 14: Sketch of the tissue compression experiment. Taken from Foty, et
al., Phys. Rev. Lett., 72, 2298–2301, 1994.

If we go about it as before, we define two areas, A1, which is in contact with the
solvent and has interfacial tension 1, and A2, which is in contact with the plates and
has interfacial tension 2. The radius of curvature on the region in contact with the
plates is infinite, so the curvature is zero, so this region does not enter into the terms
involving mean and Gaussian curvature. In the region in contact with solvent, there
are two orthogonal axes of curvature with respective radii of curvature R1 and R2.
Then, we have

Edeform = 1A1 + 2A2 + 2
A1

(
1
R1

+
1

R2

)2

+
¯A1

R1R2
. (14.15)
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We have neglected the apparent discontinuity in the curvature along the ring where
the tissue is in contact with both a plate and the solvent. When we evaluated Edeform

for a sphere, the radius of curvature in the terms relating to bending energy all can-
celed. This is not the case here, so the parameters and ¯ appear in the equilibrium
expressions and are unknown. To make matters worse, after doing some geometry
and calculations involving solids of rotation, the we get

A1 = 2 R2
2

(
2 sin

2
+

(
R1

R2
− 1
) )

, (14.16)

A2 = 2 R2
3, (14.17)

V =
R3

2

6

(
21 sin

2
− 6( − sin ) + sin

3
2

)

+ R1R2
2

(
− sin − 4 sin

2

)
+ 2 R2

1R2 sin 2

+ 2 R2R2
3 sin 2

, (14.18)

where

= 2 cos−1
(
1− R1 − R3

R2

)
. (14.19)

This is clearly a mess, and minimizing the free energy, F = Edeform − pV would be
very difficult.

14.4 Generalized Young-Laplace

I now clarify what people mean when they refer to a Young-Laplace law. When de-
riving a Young-Laplace law, the bending energy is neglected. This greatly simplifies
calculations, and is often justified, especially in tissues and biological membranes,
since stretching energy is usually far greater than bending energy. Even if we neglect
the bending energy, though, considering the whole geometry of the sheet and tak-
ing the thermodynamic approach we have been doing is very cumbersome. Instead,
we will take a thermodynamic approach in which we consider only a small piece of a
sheet.

If we neglect bending energy, the differential free energy is

dF = −p dV + dA. (14.20)

Consider a tiny piece of an undeformed sheet with area dA. It is then deformed
with a displacement along the normal to the surface of h. Now, at a point on the
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deformed surface, we define two orthogonal directions, 1 and 2. These orthogonal
directions can be the directions of principle curvature, i.e., the eigenvectors of the
local curvature tensor Cij. The eigenvectors can be made to be orthonormal, since
the curvature tensor is real and symmetric, cf. equation (14.1). (This is a general
property of real symmetric matrices.) Let the arc that lies along direction 1 of the
undeformed sheet be of length ds1 and that along direction 2 be of length ds2. Then,
the areal element is

dAunstretch = ds1 ds2. (14.21)

Now, upon deformation, the differential volume is ds1 ds2 h. Thus,

−p dV = −p h ds1 ds2. (14.22)

Now, due to curving upondeformation, the sheetmust stretch, so the differential dis-
tances along the principle curvatures experience a differential change. If we consider
the 1-direction, the differential change in the length element is ds1 h/R1, where R1 is
the first principle radius of curvature. Similarly, ds2 is increased to ds2(1 + h/R2).
Thus, the areal element is now

dAstretch = ds1

(
1+

h
R1

)
ds2

(
1+

h
R2

)

≈ ds1 ds2

(
1+

h
R1

+
h

R2

)
, (14.23)

where in the approximation we have neglected terms of second order in the displace-
ment h. Thus, the total change in area due to curvature is

dA = dAstretch − dAunstretch = ds1 ds2 h
(

1
R1

+
1

R2

)
. (14.24)

We now have a total differential free energy of

dF =

(
−p +

(
1
R1

+
1

R2

))
h ds1 ds2. (14.25)

The free energy is therefore minimal when

p =

(
1
R1

+
1

R2

)
. (14.26)

Again, noting that this pressure is really the difference in pressure on either side of
the sheet and recalling that the mean curvature is

H =
1
2

(
1
R1

+
1

R2

)
, (14.27)

we arrive at a generalized Young-Laplace law,

pin − pout = 2 H. (14.28)

Remember in this derivation that no bending energy was considered; only stretching
energy.
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14.5 Squishing tissue again

Now that we have the generalized Young-Laplace law, let’s re-evaluate the squished
tissue problem. The Young-Laplace lawmust hold at all points on the surface, so we
can arbitrarily choose point O in Fig. 14. The mean curvature here is H = (R−1

1 +
R−1

2 )/2. So, we have

pin − pout = 1

(
1
R1

+
1

R2

)
. (14.29)

We know the pressure in terms of the applied force from equation (14.14), so we have

F
R3

3
= 1

(
1
R1

+
1

R2

)
, (14.30)

which allows us to write the interfacial tension between the tissue and the media in
terms of known quantities as

1 =
F
R3

3

(
1
R1

+
1

R2

)−1

. (14.31)
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