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14 The Young-Laplace law

In this lecture, we will derive the Young-Laplace law, a key result in interpreting
the Maitre, et al. paper. It is also important in many contexts in considering the
mechanics of cells and tissues. It describes the relationship between surface areas of
a two-dimensional sheet (like the periphery of a cell) and pressure differences across
the surface. Along the way, we will consider a generic way to quantify the energetics
of thin elastic shells.

14.1  Energetics of curvature of an elastic sheet

We have derived the constitutive relations for a homogeneous elastic solid, given by
equation (10.20). Here, we consider a thin sheet, or shell, that is very thin along one
dimension, which we will arbitrarily choose to be the z-direction. Since it is thin in
one dimension, we would like to have a two-dimensional description of the object.

We can formally consider a piece of material that is very thin in 2 and derive an
effectively two-dimensional representation of the deformations. This is done, for ex-
ample, in sections 11-15 of Landau and Lifshitz Theory of Elasticity. Instead of taking
that approach, we will take a phenomenological approach based on the curvature of
the two-dimensional elastic sheet. Informally, this describes how curved the two-
dimensional surface is. To define curvature precisely, we define the positions of the
surface of a sheet with a function %4(x, y). Then, the curvature tensor is

Cy = D,0h. (14.1)

A rank-two tensor is required to describe curvature of a two-dimensional object be-
cause the object may be curved in different ways along different axes. For example, a
sphere has the same curvature everywhere, but a cylinder has finite curvature along
the azimuthal direction, but infinite curvature along the axial direction.

Given the curvature tensor, we can write the deformation energy of the shell as

Edeform = /dAf( CZ]) (142)

Here, f( C;) is an energy per area associate with the local curvature. We write f{ C;)
as a Taylor series in the curvature tensor to second order.

f(Cy) = ao + a1Cu + a2(Ciie)?* + a3CCy. (14.3)

Note that Cy, is the trace of the curvature tensor, which we define as Cy, = 2H, where
H is called the mean curvature. We call it that because the principle curvatures
(which we will call C; and C,) are the eigenvalues of the curvature tensor, and the
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mean of these curvatures is half the trace. Thatis, H = (C; + C,)/2. (Remember,
the trace is equal to the sum of the eigenvalues.)

Now, for a 2x2 tensor, C;C; = (2H)* — 2K, where K = C;C; is called the
Gaussian curvature. So, we only two independent curvature parameters, the mean
curvature and the Gaussian curvature. We can then rewrite the areal energy density
as

ﬂHm:w+§QH—Qf+kK (14.4)

where « is the bending rigidity, x is the Gaussian rigidity, y is the surface ten-
sion, and Cj, is the spontaneous curvature. The relations to the original expansion
coefficients are

ap =y + ; Co, (14.5)
a = kCy, (14.6)
P er < (14.7)
@z—g (14.8)

Let us pause for a moment to parse these new terms so we understand what they
mean (and also how they got their names). It will help to first write the deformation
energy.

Edeform :/dAf(H,K) :/dAer%/dA K(2H — Co)2+/d/1 KK
(14.9)

« Surfacetension, y: Imagine we increased the area of the sheet by some amount.
The deformation energy due to the surface tension term grows proportionally
to the increased area. If we have two immersed liquids, increasing the interfa-
cial area results in greater interfacial energy because of surface tension. The
name, then, comes from a tension that results from increasing surface area.
This term describes the energetics of stretching deformations.

« Bending rigidity, x: The bending rigidity multiplies the mean curvature.
So, the more sharply curved the sheet is, the greater the deformation energy.
The terms involving the mean curvature and the Gaussian curvature describe
bending deformations.

 Spontaneous curvature, Cy: Some elastic sheets are snherently curved. A cell
membrane that has asymmetric lipid layers is an example. For a symmetric
sheet, Cy = 0, but it can be nonzero for inherently curved sheets.
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 Gaussianrigidity, k: This multiplies the Gaussian curvature, hence the name.
We will discuss this momentarily when we talk about Gauss’s Theorema Egregium
and the Gauss-Bonnet Theorem.

While we will not derive it here, Gauss’s Theorema Egregium states that the
Gaussian curvature K is invariant under isometric transformation. In other words,
the Gaussian curvature K does not change for any deformation that does not stretch
the sheet. Furthermore, the Gauss-Bonnet theorem says that [ d4AK = 27 y(S),
where y (S) is the Euler-Poincaré characteristic, y (S) = 2(1 — g), where g is the
genus of the surface. The genus is the number of handles, or donut holes in the
surface. A torus has g = 1; a sphere has g = 0. These two theorems together
guarantee that provided we do not stretch or introduce holes into the surface, the
quantity [ d4 KK is constant, provided K is constant.

14.2  Young-Laplace Law for a sphere

Consider now a sheet that is restricted to being spherical. For a sphere or radius R,
the two principle curvatures are C; = C, = 1/R. We will assume that y, «, and k
are all constants. We further assume the material has no intrinsic curvature. In this
case, the energy of deformation is

Edctorm = 47R* (y + 1% + ]%) = 47R*y +4rx(Kk + K). (14.10)

The differential energy of deformation is then
dEdeform = 87RydR. (14.11)
The differential free energy of the shell, including now p/ contributions is

dF = dEdeform —PdV
4 3
= 8nRydR — gﬂde

= 87RydR — 47R*pdR
— 47R(2y — Rp)dR. (14.12)

As evident from the form of the total differential, the free energy is minimal when
2y = Rp,orp = 2y /R. Now, this pis really a pressure difference between the interior
and exterior of the spherical shell. So, we have

2y

< (14.13)

Pin — Pout =
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This result is commonly known as the Young-Laplace Law. But beware! This result
that holds for a sphere, where we included both stretching and bending energy, is
not general. Let us consider another example from the physics of tissues that shows
where we can run into trouble.

14.3  Squishing a balled-up tissue

In a classic experiment in the early 1990s, Foty and coworkers took living tissues from
5-6 day old chick embryos, dissociated the tissues in solution, and then allowed them
to reaggregate. The now-spherical tissue was placed between parallel plates to which
the tissue does not adhere and squished by applying force F to the top plate while the
bottom plate is fixed. The authors then observed the shape of the tissue, as shown
in Fig. 14. From the shape of the tissue, they could extract the quantities R;, R,, and
R;. The goal from the experiment is to extract the interfacial tension, y, between the
tissue and the surroundings. The approach is to derive a similar Young-Laplace law
relating the pressure to the radii Ry, R,, and R;, knowing that we can measure the
pressure by a force balance on the plates,
F F

= : ; = . 14.14
? area in contact with top plate 7R3 ( )

Figure 14: Sketch of the tissue compression experiment. Taken from Foty, et
al., Phys. Rev. Lett., 72, 2298-2301, 1994.

If we go about it as before, we define two areas, A;, which is in contact with the
solvent and has interfacial tension y,, and 4,, which is in contact with the plates and
has interfacial tension y,. The radius of curvature on the region in contact with the
plates is infinite, so the curvature is zero, so this region does not enter into the terms
involving mean and Gaussian curvature. In the region in contact with solvent, there
are two orthogonal axes of curvature with respective radii of curvature R; and R,.
Then, we have

K 1 1\* &4
Egetorm = 7/1/41 + }’ZAZ + EAl — + (1415)

R R) TRR
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We have neglected the apparent discontinuity in the curvature along the ring where
the tissue is in contact with both a plate and the solvent. When we evaluated Egeform
for a sphere, the radius of curvature in the terms relating to bending energy all can-
celed. Thisis not the case here, so the parameters k and k appear in the equilibrium
expressions and are unknown. To make matters worse, after doing some geometry
and calculations involving solids of rotation, the we get

. 0 R

A, =27R; (2 sin — + (—1 — 1) 9) : (14.16)
2 R,

A, = 27R}, (14.17)

7R3 . 0 : . 30
V= e (lemz —6(0 —sin 0) +sm7>

: .0 .0
+ nR,R} (9 —sin @ — 4sin E) + 27 RIR, sin 5

. 0
+ 27 R,R; sin 2 (14.18)
where
R, —R
0 = 2cos™! (1 - 1R 3) : (14.19)
2

This is clearly a mess, and minimizing the free energy, F = Eyeform — p¥ would be
very difficult.

14.4  Generalized Young-Laplace

I now clarify what people mean when they refer to a Young-Laplace law. When de-
riving a Young-Laplace law, the bending energy is neglected. This greatly simplifies
calculations, and is often justified, especially in tissues and biological membranes,
since stretching energy is usually far greater than bending energy. Even if we neglect
the bending energy, though, considering the whole geometry of the sheet and tak-
ing the thermodynamic approach we have been doing is very cumbersome. Instead,
we will take a thermodynamic approach in which we consider only a small piece of a
sheet.

If we neglect bending energy, the differential free energy is
dF = —pdV + ydA. (14.20)

Consider a tiny piece of an undeformed sheet with area dA4. It is then deformed
with a displacement along the normal to the surface of o4. Now, at a point on the
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deformed surface, we define two orthogonal directions, 1 and 2. These orthogonal
directions can be the directions of principle curvature, i.e., the eigenvectors of the
local curvature tensor C;. The eigenvectors can be made to be orthonormal, since
the curvature tensor is real and symmetric, cf. equation (14.1). (This is a general
property of real symmetric matrices.) Let the arc that lies along direction 1 of the
undeformed sheet be of length ds; and that along direction 2 be of length ds,. Then,
the areal element is

d-Aunstretch = dsl d52- (1421)
Now, upon deformation, the differential volume is ds; ds, 64. Thus,
—pdV = —p Shds ds,. (14.22)

Now, due to curving upon deformation, the sheet must stretch, so the differential dis-
tances along the principle curvatures experience a differential change. If we consider
the 1-direction, the differential change in the length element is ds; 6%/R,, where R, is
the first principle radius of curvature. Similarly, ds, is increased to ds,(1 + 6%/R,).
Thus, the areal element is now

oh oh
dAstretch = d31 <1 —+ R_l) d52 (1 + R_Z)

oh  Oh
~dagds, ([1+—+ — |,
e (14 3+ 1)
where in the approximation we have neglected terms of second order in the displace-
ment 6k. Thus, the total change in area due to curvature is

(14.23)

d4 = dAstretch - dAunstretch = d.S'1 dfz oh i + i . (1424)
Ry R,
We now have a total differential free energy of
1 1
R, R,
The free energy is therefore minimal when
(L] (14.26)
p=v RR) .

Again, noting that this pressure is really the difference in pressure on either side of
the sheet and recalling that the mean curvature is

1/1 1
H=—-|—+— 14.27
we arrive at a generalized Young-Laplace law,
Pin _Pout == ZVH (1428)

Remember in this derivation that no bending energy was considered; only stretching
energy.
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14.5 Squishing tissue again

Now that we have the generalized Young-Laplace law, let’s re-evaluate the squished
tissue problem. The Young-Laplace law must hold at all points on the surface, so we
can arbitrarily choose point O in Fig. 14. The mean curvature here is H = (R; ' +
R;")/2. So, we have

| (L, (14.29)

pm pout =N Rl Rz . .
We know the pressure in terms of the applied force from equation (14.14), so we have
ro_ L (14.30)

R~ \R "R '

which allows us to write the interfacial tension between the tissue and the media in
terms of known quantities as

F (1 1\
I L T 14.31
7/1 ﬂ_Rg <R]+R2) ( )
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