
BE 159 Winter 2018
Homework #5

Due at the start of class, February 28, 2018

Problem 5.1 (Equation of motion for the cortex).
In the Mayer, et al. paper, the authors describe the dynamics of cortical flow using
the following equation.

−η∂2
x vx + γvx = ∂xC. (5.1)

Note that when we have repeated indices that are x, y, or z, summation is not as-
sumed. In the notation we have been using in lecture, this is

−η∂2
x vx + γvx = ∂x σ a. (5.2)

This equation describes how a gradient in active stress drives cortical flow against
viscous dissipation and frictional losses. In this problem, you will derive this equa-
tion. Even though the nematic order does not appear in the equation, it is necessary
in its derivation. We saw in lecture that wemust have anisotropy to be able to support
active stresses; this will become clear when we consider the nematic order explicitly
in deriving the above cortical equation of motion.

In lecture, we defined the nematic order parameter as

Qij = S
(

ninj −
1
3

δ ij

)
. (5.3)

Here, S is the magnitude of the local order. We wrote the active stress as a Taylor
series expansion of the nematic order parameter as

σ active = σ 0
a δ ij + σ aQij. (5.4)

Then, the stress tensor for a three-dimensional active nematic viscous fluid, which
is how are are modeling the cortex, is

σ ij = −Π δ ij + 2ηvij + σ nematic
ij + σ aQij, (5.5)

where Π = p − σ 0
a and vij is the symmetric part of the velocity gradient tensor,

vij =
1
2
(∂ivj + ∂jvi) . (5.6)

We denote by σ nematic
ij the passive stresses due to nematic order. The σ nematic

ij term is
directional active stress exerted along the nematic order. The equation of motion is
then, considering again the interialess limit for an incompressible fluid,

∂j σ ij = 0 = −∂i Π + η∂j∂jvi + ∂j σ nematic
ij + ∂j(σ aQij). (5.7)

Starting from these equations, you will derive the equation of motion for the cor-
tex, (5.2).
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a) To simplify things, wewill assume that the alignment of filaments in the cortex
rapidly relax to equilibrium so that the dynamics of the order parameter may
be neglected, i.e., Qij is constant. To find the equilibrium value of Qij, we note
that the deformation energy of a nematic liquid crystal can be approximately
written as

Fd = F0 +
χ
2

QijQij +
L
2
(∂kQij) (∂kQij) . (5.8)

Give an explanation as to why this is a reasonable functional form for the de-
formation free energy.1

We can find σ nematic
ij to be related to the functional derivative of the defor-

mation energy. You do not need to derive this, but you get the result we stated
in lecture.

σ nematic
ij = β 1 (χ − L∂k∂k)Qij. (5.9)

b) The cortex is essentially a two-dimensional object. It is only about one micron
thick, but has extent of over 50 microns. We therefore assume that the fila-
ments of the cortex are aligned only in the x-y plane. In other words, nz = 0,
which means that Qxz = Qyz = 0 and Qzz = −S/3. Given that it is con-
strained to two dimensions, find the value of Qij that minimizes the deforma-
tion free energy, subject to the constraint that alignment is confined to a thin
sheet, i.e., that nz ≈ 0. Your result will be linear in S.

c) Next, we specify that the cortex does not bend or buckle, so the stresses normal
to the two-dimensional cortex should vanish. In other words, σ zz = 0. Based
on this assumption, derive an expression for Π . Hint: Don’t forget that in
three dimensions, the material is incompressible, so ∂ivi = 0.

d) Using the expression you derived in part (c), along with the assumption that
Qij is constant, show that the two dimensional equations of motion are

η∂2
z vx + 3η∂2

x vx + η (∂2
y vx + 2∂x∂yvy) + ∂x σ a = 0, (5.10)

η∂2
z vy + 3η∂2

y vy + η (∂2
x vy + 2∂y∂xvx) + ∂y σ a = 0, (5.11)

where we have absorbed a factor of S/2 into σ a.

e) Show that

η∂2
z vx = ∂z σ xz + η∂x(∂xvx + ∂yvy). (5.12)

1There are also deep arguments about symmetry that come into play here, but you do not need
to worry too much about those. You can read more about this particular form of the free energy; it is
called a Landau-de Gennes expansion.
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A similar relation holds in the y-direction. As a result, we have

∂z σ xz + η (∂2
x + ∂2

y )vx + 3η∂x(∂xvx + ∂yvy) + ∂x σ a = 0, (5.13)

∂z σ yz + η (∂2
x + ∂2

y )vy + 3η∂y(∂xvx + ∂yvy) + ∂y σ a = 0. (5.14)

f ) Next, wewill average the two equations over the thin dimension, z. That is, we
will apply the operation h−1 ∫ h

0 dz, where h is the cortical thickness, to each
equation. We define

ā =
1
h

∫ h

0
dz a, (5.15)

where a is some physical quantity, such as vx. Show that if ∂xh ≈ 0, i.e., if h
is approximately constant, then ∂xa ≈ ∂xā. Going forward, you may assume
that similar results hold for ∂ya, ∂x∂ya, and so on.

g) Perform the averages over equations (5.13) and (5.14). You will be left with a
term like h−1 σ xz

∣∣h
0. Explain why we can write

1
h σ xz|h0 = −γ v̄x. (5.16)

What is the meaning of the parameter γ?
h) Your equations should now look like

−γ v̄x + η (∂2
x + ∂2

y )v̄x + 3η∂x(∂xv̄x + ∂yv̄y) + ∂x σ̄ a = 0, (5.17)

−γ v̄y + η (∂2
x + ∂2

y )v̄y + 3η∂y(∂xv̄x + ∂yv̄y) + ∂y σ̄ a = 0. (5.18)

Explain why the quantity 3η is a two-dimensional bulk viscosity.

i) Now, wewill assume that we can neglect curvature and that we have azimuthal
symmetry in theC. elegans cortex. Under these assumptions, write a simplified
version of equation (5.17). Is equation (5.18) still necessary? Finally, what do
we need to do to get the final result we are after, equation (5.2)?
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