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5 Delta-Notch signaling

During development, cells need to communicate with their nearest neighbors to en-
able differentiation. The Delta-Notch pathway is central to this end. We will see
this when we discuss the Soroldoni, et al. paper, in which Delta-Notch signaling
couples genetic oscillators in neighboring cells.

5.1 Molecular biology of the Delta-Notch signaling system

Delta-Notch signaling provides a mechanism for neighboring cells to communicate
with each other. The molecular mechanism is shown in Fig. 6. Notch is a trans-
membrane protein that is the receptor for another transmembrane protein Delta.
When a cell is expressing Notch and its neighbor is expressing Delta, Delta binds
Notch, which results in a conformational change. This enables proteolytic cleav-
age of Notch, resulting in the Notch intracellular domain (Nicd) detaching from the
membrane complex. Nicd acts as a transcription factor. It is a co-activator with
Mastermind and a co-repressor with Hairless, in addition to having other binding
partners that control gene expression.
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E3 ubiquitin ligase
An adaptor protein that links 
ubiquitin-conjugating E2 
enzymes with substrates and 
contributes to the catalytic 
transfer of ubiquitin onto the 
substrate.
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A clathrin and phosphatidyli-
nositol-4,5-bisphosphate-
binding protein that contains 
ubiquitin-interaction motifs. It 
is thought to facilitate 
endocytosis of ubiquitylated 
cargo proteins.

Auxilin
A J-domain-containing protein 
that is implicated in the 
disassembly of clathrin from 
clathrin-coated vesicles.

Recycling endosome
A compartment that sorts 
transmembrane proteins that 
are recycled to the plasma 
membrane following 
endocytosis.

Exocyst
A heteromeric protein complex 
that is required for polarized 
exocytosis of post-Golgi 
secretory vesicles.

question is, what happens once Nicd enters the nucleus? 
Both the duration of signalling and the identity of target 
genes have impacts on the output of Notch activation, 
so their regulation is of major importance. Together, the 
different mechanisms give a perspective on how this 
simple pathway can be manipulated, but they also show 
that we are still just beginning to understand the full 
complexities of Notch regulation.

Regulation of Notch-ligand activity
Expression of Notch ligands during development is quite 
dynamic and contributes significantly to differential 
activity of the pathway. In some developmental con-
texts, the ligand is produced by a distinct population of 
cells (boundaries/inductive signalling; BOX 2). However, 
under many circumstances, differential ligand transcrip-
tion is not sufficient to explain why certain cells become 
the signal-sending cells. Other post-transcriptional 
mechanisms are clearly at work.

Ubiquitylation and ligand activity. The identification 
of the E3 ubiquitin ligases, Neuralized (Neur) and Mind 
bomb (Mib), that interact directly with Notch ligands 
and are required for ligand activation (FIG. 2) was a strik-
ing and surprising recent discovery14,15. Loss of Neur in 
D. melanogaster or Xenopus laevis and of Mib1 in zebrafish 
results in neurogenic phenotypes16–19. In D. melanogaster, 
mib1  mutants have a later defect of arrested appendage 
(imaginal disc) development (possibly due to persistence 
of maternal protein or redundancy with MIB2). The 
MIB1-associated defects can be rescued by expression of 

Neur, which indicates that these two proteins — although 
they share few structural similarities apart from RING 
domains — can perform the same function20–22. Much 
of the difference between these two E3 families might be 
attributed to their expression patterns and to their regula-
tion (see below), although it remains possible that they 
preferentially interact with different Notch ligands.

In normal cells, the extensive trafficking of Notch lig-
ands through the cell is evident from intracellular puncta 
that are detected in different tissues and animals. This traf-
ficking is compromised in the absence of Neur or Mib, as 
ligands accumulate at the cell surface but are inactive18,21. 
This surprising observation indicates that regulation of 
ligand activity by Neur and Mib is intimately associated 
with endocytosis (FIG. 2) and it requires the ubiquitin-
binding protein Epsin23–25 and probably the J-domain-
containing protein auxilin (which can disassemble 
clathrin coats)26.

Different models have been proposed to explain the 
link between ubiquitylation, endocytosis and ligand 
activity14,15,23. For example, ligand endocytosis could 
generate a ‘pulling force’ on a bound receptor that causes 
a conformational change in the juxtamembrane region27. 
Another possibility is that ubiquitylation promotes ligand 
clustering. Indeed, Notch activation is more effective 
if soluble ligands are clustered through fusion to an 
Fc moiety or through immobilization on plastic28,29. 
A third possibility is that ubiquitylation permits traffick-
ing into an endocytic compartment, which enables ligand 
modification or results in re-insertion of the ligand into 
specific membrane domains. Two observations support 
this model. Segregation of RAB11, a component of the 
recycling endosome, influences signalling in the D. mela-
nogaster sensory organ precursors (SOP). Furthermore, 
mutations in an exocyst component, SEC15, compromise 
SOP Notch signalling30,31.

Paradoxically, some functional ligands in C. elegans 
are secreted (for example DSL-1; REF. 32) and so 
would presumably not be ubiquitylated. However, the 
ubiquitin-binding protein Epsin is also required for 
Notch (LIN-12) signalling activity in this animal, 
implying that mechanisms of ligand activation are 
conserved33. Whatever the mechanism for ligand activa-
tion, regulation of E3 ligases is potentially one signifi-
cant strategy for controlling the activity of the Notch 
pathway, as exemplified by the Bearded-related family 
of small inhibitory polypeptides34,35 (BOX 3). Therefore, 
elucidating the mechanism of ligand activation is of 
prime importance.

Ligand localization. The localization of ligands within 
the cell is important for effective signalling and might 
be influenced by other proteins. For example, Echinoid, 
an immunoglobulin C2-type cell-adhesion molecule, 
colocalizes with Notch and Delta at adherens junctions in 
D. melanogaster.

Genetic interactions indicate that Echinoid functions 
as a positive regulator to promote Notch signalling36. 
Echinoid colocalizes with Delta in endocytic vesicles, 
and Echinoid overexpression depletes Delta from 
the membrane. Therefore, it is possible that Echinoid 

Figure 1 | The core Notch pathway. Binding of the Delta ligand (green) on one cell to 
the Notch receptor (purple) on another cell results in two proteolytic cleavages of the 
receptor. The ADAM10 or TACE (TNF-α-converting enzyme; also known as ADAM17) 
metalloprotease (yellow) catalyses the S2 cleavage, generating a substrate for S3 
cleavage by the γ-secretase complex (brown). This proteolytic processing mediates 
release of the Notch intracellular domain (Nicd), which enters the nucleus and interacts 
with the DNA-binding CSL (CBF1, Su(H) and LAG-1) protein (orange). The co-activator 
Mastermind (Mam; green) and other transcription factors (see also FIG. 4) are recruited to 
the CSL complex, whereas co-repressors (Co-R; blue and grey) are released.
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Figure 6: Sketch of the molecular details of Delta-Notch signaling. The insides
of neighboring cells are shown in brown and the intercellular space is shown in
light blue. Taken from Bray,Nat. Rev. Mol. Cell Biol., 7, 678–689, 2006.

Importantly, Nicd represses production of Delta. So, a cell that has a lot of
cleaved Notch will stop producing Delta. Thus, a cell expressing a lot of Delta will
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suppress Delta expression in the neighboring cell by activating Notch in the neigh-
bor. A schematic of this process is shown in Fig. 7.

Figure 7: Schematic of nearest-neighbor cell differentiation by Delta-Notch.
Delta expressed by the bottom cell activatesNotch in the top cell. The activated
Notch in the top cell suppresses Delta in the top cell. Because there is no Delta
on the surface of the top cell, Notch is inactive in the bottom cell. Since Notch
is inactive, Delta continues being expressed in the bottom cell.

So, the Delta-Notch system enables a cell to access a cell fate and instruct its
neighbors not to access the same fate.

5.2 Mathematical analysis of the Delta-Notch system

We will develop a simple model to describe the dynamics of the Delta-Notch sig-
naling between two nearest-neighbor cells. Let /� be the number of active Notch
molecules in cell 1 and %� be the number of Delta molecules, with /� and %� simi-
larly defined. We then write the dynamics as

E/�
EU = '(%�)− ȁ/ /� (5.1)

E%�
EU = ((/�)− ȁ% %� (5.2)

E/�
EU = '(%�)− ȁ/ /� (5.3)

E%�
EU = ((/�)− ȁ% %�. (5.4)

We have defined ȁ/ and ȁ% to be the respective autodegradation rates of Notch and
Delta. The function '(%) describes how the Delta level in a neighboring cell affects
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theNotch level. This function should bemonotonically increasing, sincemoreDelta
implies more active Notch. The function ((/) describes how the level of active
Notch in a cell affects its Delta level. Since Notch represses Delta, this should be
monotonically decreasing.

5.2.1 Nondimensionalization

We will nondimensionalize these dynamical equations. this is the process of re-
defining variables and parameters so that each term in the system of ODEs has no
units. This also usually results in driving down the total number of parameters. We
define the following, with dimensionless quantities being either lowercase ormarked
with a tilde.

U = Ȓ Ũ (5.5)

((/�) = (� H(/�//�) (5.6)

'(%�) = '� G(%�/%�) (5.7)

/� = /�O� (5.8)

%� = %�E�, (5.9)

with other variables similarly defined. After substitution and rearrangement, we get

Ȯ� =
'� Ȓ
/�

G(E�)− ȁ/ ȒO� (5.10)

Ė� =
(� Ȓ
%�

H(O�)− ȁ% ȒE� (5.11)

Ȯ� =
'� Ȓ
/�

G(E�)− ȁ/ ȒO� (5.12)

Ė� =
(� Ȓ
%�

H(O�)− ȁ% ȒE�, (5.13)

where the over-dot indicates differentiation by Ũ. Now, we choose Ȓ = ȁ−�
/ and

/� and %� such that MJNE→∞ G(E) = � and H(O = �) = �. We further choose
'� = /�/Ȓ and (� = %�/Ȓ . With these choices, we have

Ȯ� = G(E�)− O� (5.14)

Ė� = ȋ (H(O�)− E�) (5.15)

Ȯ� = G(E�)− O� (5.16)
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Ė� = ȋ (H(O�)− E�) , (5.17)

where we are left with a single parameter, ȋ = ȁ%/ȁ/, the ratio of the decay rates of
Delta and Notch.

5.2.2 Homogeneous steady state

We are interested in knowing if these two neighboring cells can differentiate from
each other. We therefore wish to find a homogeneous steady state, O� = O� = O�
and E� = E� = E�, and test its stability. If this homogeneous steady state is unstable
(i.e, if the dynamical system “runs away” from the homogeneous steady state upon
a small perturbation), we expect the cells to be able to differentiate. If it is stable,
they cannot spontaneously differentiate.

To find the steady state, we solve the systemof equationswith all time derivatives
set to zero. I.e., we wish to solve

G(E�)− O� = �, (5.18)

H(O�)− E� = �. (5.19)

The first equation gives O� = G(E�), so the second equation tells us we must have
H(G(E�)) = E�. We will write H(G(Y)) as HG(Y), where HG(Y) is called the composi-
tion of the functions H and G. Now, G(Y) is a monotonically increasing function and
H(Y) is a monotonically decreasing function, so HG(Y) is a monotonically decreasing
function. So we have that HG(E�) is monotonically decreasing toward zero while the
function I(E�) = E� is monotonically increasing from zero. This means that these
two functions cross exactly once, so there exists a unique homogeneous steady state.

5.2.3 Linear stability analysis

To test the stability of the homogeneous steady state, we turn to linear stability
analysis. The basic idea is to linearize the right hand sides of theODEs by expanding
them in Taylor series to first order about the homogeneous steady state. The result
is a linear dynamical system which is readily solved by computing the eigenvalues.
If any of the real parts of the eigenvalues is positive, the homogeneous steady state
is unstable, since the concentration of one of the species will, at least close to the
homogeneous steady state, grow exponentially.

Let O�, E� be the homogeneous steady state. We take a small perturbation off of
this steady state such that

O� = O� + ȂO� (5.20)
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E� = E� + ȂE� (5.21)

O� = O� + ȂO� (5.22)

E� = E� + ȂE�, (5.23)

where V ≡ (ȂO�, ȂE�, ȂO�, ȂE�) is a small perturbation about the homogeneous
steady state. We expand the functions G(E) and H(O) to first order in the pertur-
bation.

G(E�) = G(E�) + G ′(E�)ȂE� +O
(
(ȂE�)

�) , (5.24)

H(O�) = H(O�) + H ′(O�)ȂO� +O
(
(ȂO�)

�) , (5.25)

and so on. We define G� = G ′(E�) and H� = H ′(O�) for notational convenience. Then,
to linear order in the perturbation, we have

E
EU ȂO� = G� ȂE� − ȂO� (5.26)

E
EU ȂE� = ȋ (H� ȂO� − ȂE�) (5.27)

E
EU ȂO� = G� ȂE� − ȂO� (5.28)

E
EU ȂE� = ȋ (H� ȂO� − ȂE�) . (5.29)

This can be written in matrix form as

E
EU V = � · V, (5.30)

with

� =

⎛

⎜⎜⎝

−� � � G�
ȋH� −ȋ � �
� G� −� �
� � ȋH� −ȋ

⎞

⎟⎟⎠ . (5.31)

It is useful to remember that the sum of the eigenvalues of a matrix is given by the
trace and the product of the eigenvalues is given by the determinant.

US � = −�(� + ȋ ) (5.32)

EFU � = ȋ � (� − G �
� H�

�
)
. (5.33)

We can directly compute the eigenvalues by computing the characteristic polyno-
mial.

(� + ȉ)� (ȋ + ȉ)� − ȋ �G �
� H�

� = � (5.34)
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Therefore, one pair of eigenvalues is given by the solutions of

(� + ȉ) (ȋ + ȉ) = ȋG� H�, (5.35)

and the other pair by solutions of

(� + ȉ) (ȋ + ȉ) = −ȋG� H�. (5.36)

These are all quadratic equations, which can be solved to give

ȉ� = −� + ȋ
�

(
� +

√

� − �ȋ
(� + ȋ )� (� − G� H�)

)
, (5.37)

ȉ� = −� + ȋ
�

(
� −

√

� − �ȋ
(� + ȋ )� (� − G� H�)

)
, (5.38)

ȉ� = −� + ȋ
�

(
� +

√

� − �ȋ
(� + ȋ )� (� + G� H�)

)
, (5.39)

ȉ� = −� + ȋ
�

(
� −

√

� − �ȋ
(� + ȋ )� (� + G� H�)

)
. (5.40)

Clearly, eigenvalues ȉ� and ȉ� have negative real parts. For ȉ� to have a positive real
part, we must have

G� H� > �. (5.41)

This is not possible since recall that G� > � and H� < �, so G� H� < �. So, the only
eigenvalue that can have positive real part is ȉ �. This happens when

G� H� < −�. (5.42)

This condition must be met for the homogeneous steady state to be unstable. This
tells us that either G(E), H(O), or both must be steep functions near the steady state.
This implies cooperativity, which we will discuss more explicitly in a simple limit in
section 5.2.5.

5.2.4 Linear stability in the ȋ ≫ � regime

To make more analytical progress, we consider the case where ȋ ≫ �, which is to
say that the Delta dynamics are much faster than the Notch dynamics. We note that
the terms multiplying ȋ in equations (5.15) and (5.17) must be of order ȋ−� ≈ �,
since all of the variables have been scaled to unity. This means that H(O�) ≈ E� and
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H(O�) ≈ E�. With this approximation, we can reduce the dynamical system to two
equations.

Ȯ� = GH(O�)− O� (5.43)

Ȯ� = GH(O�)− O�. (5.44)

We can again perform linear stability analysis, defining now

GH� ≡
EGH(O)

EO

∣∣∣∣
O=O�

. (5.45)

We get

E
EU

(
ȂO�
ȂO�

)
=

(
−� GH�
GH� −�

)
·
(

ȂO�
ȂO�

)
. (5.46)

The sum of the eigenvalues of this linear stability matrix is ȉ� + ȉ� = −�, implying
that at least one of the eigenvalues has a negative real part. The product of the eigen-
values is given by the determinant, or ȉ� ȉ� = � − (GH�)�. Since at least one of the
eigenvalues has a negative real part, we must have ȉ� ȉ� < � to have an instability.
So, we must have (GH�)� > �, or GH� < −�, since GH� < �. This tells us that the
composite function GH(Y)must be steep.

5.2.5 Cooperativity in the ȋ ≫ � regime

We will model G(Y) and H(Y) as Hill functions to gain some more insights into the
requirements for instability.

G(Y) = YOG

B + YOG
, (5.47)

H(Y) = C
C + YOH

. (5.48)

Then, we have

GH(Y) = [C/(C + YOH)]OG

B + [C/(C + YOH)]OG . (5.49)

From this, we can compute GH� as

GH� =
EGH
EY

∣∣∣∣
Y=Y�

= −BOG OH
C

YOH−�
�

[
C/(C + YOH

� )
]OG+�

(
B +

[
C/(C + YOH

� )
]OG)� , (5.50)
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where we are calling Y� the homogeneous steady state. We compute the differential
of this function for OG = OH = �.

GH� = − B�C�

(C + BC + BY�)� . (5.51)

Thus, we have that GH� can never have a magnitude greater than unity. Therefore, if
OG = OH = �, we cannot have an instability. So, a requirement for instability of the
Delta-Notch system in the limit where Delta dynamics are much faster than Notch
dynamics is that we must have cooperativity, i.e., OG > �, OH > �, or both.
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