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6 Segmentation clocks

The precursor to vertebrae are called somites, illustrated in Fig. 8. In this lecture, we
explore the mechanisms for somitogenesis, the process by which these somites are
formed.
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Figure 8: Somites in a developing chick embryo. Image taken from Phillips, et
al., Physical Biology of the Cell, 2nd Ed., Fig. 20.21, 2012.

6.1 Basics of somitogenesis

Itis believed that somitogenesis happens as a result of oscillatory gene expression and
arrest of this oscillation at a specified position along the anterior-posterior axis of the
developing embryo. At the tail end of the embryo, cells in the presomitic mesoderm
(PSM) (Fig. 9) exhibit oscillatory expression of certain genes. In zebrafish, these
genes are /erl and Aer7, related to the pair-rule gene kairy in Drosophila (hence the
name; Aer is short for hairy-related). As the her genes oscillate, the organism is grow-
ing, so the PSM keeps moving posteriorly. If the oscillating cells are far enough from
the posterior, they arrest. The position where the arrest occurs is called the arrest
front. If a cell is in a peak of the %er oscillation when it arrests, it will have one fate,
but if it is in a valley, it will have another fate. Thus, the alternating structure of the
somites is formed. Note that the distance between the arrest front and the posterior
end of the organism may fluctuate, but in many models is taken to be constant.

6.2 The clock-and-wavefront model

The clock-and-wavefront model was proposed by Cooke and Zeeman in 1975 and
was one of the first models put forward to describe somitogenesis. This model is
based on the following assumptions.

a) All cells in the PSM are oscillating.

b) Coupling between the cells induces synchrony in oscillation, setting the oscil-
lation frequency to be 7.
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Figure 9: A schematic of the clock and wavefont model for somitogenesis. Im-
age taken from Phillips, et al., Physical Biology of the Cell, 2nd Ed., 2012.

c) Waves arrest at a front at the anterior.

d) The arrest front moves posteriorly with a speed v.

In this model, since all cells in the PSM are oscillating 7z unison, meaning that they
have both the same frequency and the same phase, the dynamics of the extension of
the PSM during growth is irrelevant. Only the motion of the front into the oscillating
cells is important.

An important conclusion of this model is that the size of the somitesis s = v/T.
This is the distance traveled by the arrest front between peaks in the oscillators. The
model can be tested indirectly by measuring somitogenesis over a time interval of set
length, as shown in Fig. 10. We measure the length of the region of somites, D, and
the position of the arrest front, W, and W), and the beginning and end of the time
interval, respectively.

The speed of the arrest front is v = (W, — W,)/n, where n is the number of
somites that are formed in the interval. (Developmental time is usually measured
in units of number of somites.) The rate of somite formation is D;/n. If the clock-
and-wavefront model is true, then the rate of somite formation and the speed of the
arrest front should be equal, so we should have D; = (W), — W,). This was tested
in Gomez et al., NVature, 454, 335-339, 2008, and the result is shown in Fig. 11.
For each of four species, the ratio of the rate of arrest front movement to that of
the formation of somites, (W, — W,) /D, is approximately unity, suggesting that
the oscillation frequency is tuned with the front velocity, as given by the clock-and-
wavefront model. However, note that this ratio is decidedly below unity for zebrafish.

The clock and wavefront model also makes valuable predictions about the size
and number of somites in mutants. Consider first the ratio of the sizes of somites in
wild type and mutant embryos. Here, we assume the mutations affect the genetic
oscillations and not the speed of the arrest front. Specifically, for the purposes of
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Figure 10: A schematic of a measurement of the arrest front speed and rate of
somitogenesis in a corn snake embryo. The gene MSGN1 is stained to signify
the location of the PSM. The arrest front is at the anterior edge of this stained
region. The somites are also clearly visible. W, and W, are the positions of
the arrest front at the beginning and end of a developmental time interval, and
Dy is the length of somite region formed during the same time interval. From
Phillips, et al., Physical Biology of the Cell, 2nd Ed., 2012, adapted from Gomez
et al., Mature, 454, 335-339, 2008.

discussion, we will take Ty > Ty.

S mut VTmut Tmut
_ _ L 6.1
N wt VTWt th ( )

So, we get larger somites with slower oscillations. Now, consider the ratio of the
number of somites over the developmental time 7., .

Nyt - Tdev/ Tmut - th
- — )
Ny Tdev / th Tmut

(6.2)

which says that we get fewer somites.

6.3 PSM cells do not oscillate in unison
Despite some indirect experimental evidence supporting the original clock-and-wavefront

model, such as in the Gomez et al. paper, direct observations of 4er? dynamics in the
PSM show that the gene expression in the cells does not oscillate in unison. This was
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Figure 11: The ratio of the rate of the arrest front movement (Vy) to that of
formation of somites (V;). For all four species, this ratio is approximately unity.
Adapted from Gomez et al., MVature, 454, 335-339, 2008.

seen before by fixing and staining embryos at certain time point, but was more firmly
demonstrated when Soroldoni, et al. (Science, 345, 222-225, 2014) developed a re-
porter for kerl in vivo. As seen in Fig. 12, the expression of 4er is not uniform.
Further, we see that kinematic waves of /er! expression travel toward the anterior
where they are arrested.

Figure 12: Image of /erl expression over time in a developing zebrafish em-
bryo. Waves of expression (each wave is identified and color coded with arrow-
heads) travel toward the posterior where they are arrested. Figure taked from
Soroldoni, et al., Science, 345, 222-225, 2014.

To understand how kinematic waves work, I borrow the analogy from the Soroldoni
paper. Think about a stock ticker. Each light flicks on and off and there is some cou-
pling to neighboring lights. The result is a movement of an image of lights across the
ticker, even though each light bulb is stationary.

Since the observation of kinematic waves automatically eliminates the clock-and-
wavefront hypothesis with a uniform oscillation frequency, we need to take a more
careful look at the oscillators.

SThis is better seen through a movie of this process, http://science.sciencemag.org/
highwire/filestream/595541/field_highwire_adjunct_files/0/1253089sl.
av1i, though the link may not work for you because Sczence is a closed journal.
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6.4 Generic description of oscillatory gene expression in somitogene-
Sis

To more generically describe somitogenesis, Soroldoni et al. describe the oscillations
in the PSM generically as a function of space and time. To do this, we define a generic
description of an oscillatory function. For any function Q(x;, #) that is oscillatory in
time, we can write the dynamics at position x as

Q(X, t) =qo+ Q(xv t) cos ¢(x7 t)? (63)

where ¢(x, 1) is the phase of the oscillation, g is the baseline, and g(x, ) is the am-
plitude. The parameters g, and g(x, ) capture the strength of the oscillatory signal,
while the frequency information is captured in the phase. As an example, we get a
pure cosine wave that is uniform in space if ¢(x,7) = @t, and a pure sine wave if
¢(x,t) = ot — n /2. The period of both of these wavesis T =27/ w.

Our analysis will focus on the phase of the oscillations, which is a result of the
temporal dynamics of gene expression and coupling to neighboring cells. Let the x-
position of the posterior end of the PSM be x = 0 and let a(t) be the x-position of the
anterior end of the PSM (the arrest front). We define ¢p, = ¢(a(), ?) as the phase
of the oscillators at the anterior and ¢, = ¢(0, ) as the phase of the oscillators at
the posterior. Then, the number of kinematic waves, K, in the PSM is given by the
total difference in phase, modulo 2 7.

bp— P4
K=t -4 6.4
Note that we do not wrap the phase shift here, i.e., ¢ = 27 is not the same as
¢ =4n.

To investigate how the number of kinematic waves changes in time, we compute
the time derivative.

dk 1 (d¢p dgy\ _wp—wa 1 1 (6.5)
dt 2z \ dr dr 27 T, Ti )
where we have defined
¢
= —. 6.6
=7 (6.6)

This tells us that if the number of kinematic waves changes in time, then the period
at the anterior is different than that at the posterior. This can be observed experi-
mentally, and is one way of seeing a non-flat phase profile across the PSM.

Ijust used the word phase profile loosely to mean how the phase of the oscillators
varies across the PSM. Let’s codify that more concretely. We define the phase profile

w(x, 1) as
wix, 1) = plx, 1) — hp(1), (6.7)
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which is simply how the phase varies as we move away from the posterior. Then, we
can write

_d¢ _dey  dyta(o). 1)

Wy = =

dr dt dr
B dw(a(t),t)  da dy(a(t),?)
SOPt T T T o
= wp + ow + wp, (6.8)

So, the difference in oscillation frequency between the anterior and posterioris w4 —
wp = ®w + @p. We have defined wy = Ow(a(t),t)/0t. This is the change
in frequency that is inherent to the oscillators. Soroldoni, et al. call 27/ @y the
“dynamic wavelength,” which gives the change of the wavelength of the kinematic
waves in time. We have also defined

_ da dy(a(1),1)
b= dar ox

This describes how the anterior phase differs from the posterior due to the Doppler
effect. Since the PSM is shortening during development, the anterior is rushing into
the kinematic waves, so the observed frequency is higher. Specifically, the speed of

the observer is da/dr and the traveling wave has a wavelength of 2z (v /9x) .

(6.9)

6.5 Assessment of models in terms of w4 and wp

Soroldoni, et al. can measure the phase profile and can therefore deduce wp and
@ w. What do different models predict?

Clock-and-wavefront model. In this model, ¢ (x,7) = w¢, since all oscillators
oscillate in unison with a constant frequency w. Thus, ¢ (x,f) = ¢p(t) Vx, so
¢(x,t) =0. Thus, wp = ow = 0and ws = wp.

Steady-state PSM. One might consider the scenario where the PSM is in steady
state. That is to say that it does not grow or shrink, a(f) = a, and there is no
modulation of the phase portrait, ¢ (x,f) = @t + y(x). In this case, y is not a
function of time, so @y = 0. The length of the PSM, q, is also not a function of
time so, da/dt = 0, meaning that @, = 0. So, again, we have w4 = wp under this
model.

Scaling wave pattern. In this model, the phase profile is a time-independent func-
tion of the normalized PSM length.

¢(x,t) = wt+ y(x/a(t)), (6.10)
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and we may have da/dr # 0. Then, we have

_ Oy(x/a(t))  lda Oy
OVETT0r T Tadr aal) |y (6.11)
and
_da dy(x/a(t)) 1da Oy
PTG T ox adr 0al) |y (612)

So, in this case, @ p and w y have equal magnitude and opposite sign. Thus, we
again have w4 = wp. Therefore, if we find experimentally that dK/d¢ # 0, we must
have Tp # T}y, so therefore wp # @4, and none of these three models can be true.
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