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12 Continuum mechanics III: active complex fluids

Wehave conservation laws formass and linearmomentum. In both cases, we showed
that the conservation law is of the same form. The time rate of change of a quantity is
given by the divergence of a flux, plus some generation term for nonconserved quan-
tities. When written in the comoving frame (that is, using the material derivative),
we can define the flux tensor we need to specify. For conservation of momentum,
this flux tensor is the stress tensor. The specification of the stress tensor is called a
constitutive relation, and we have reasoned or way to them thus far (really, without
proof ). Now, we will move on to active fluids, which are a central topic in theMayer,
et al. paper.

12.1 Isotropic active viscous fluid

Our immediate goal is to model the acto-myosin cortex of the developing C. elegans
embryo. The cortex is an example of an active fluid, in that it can exert stresses
upon itself. This is achieved through the activity of motor proteins that cross-link
actin filaments. Working together, themotors serve to compress the actinmeshwork.
We therefore add an active stress to the stress tensor. We will define the magnitude
of this active stress to be ȑB. In general, this can be a function of myosin motor
concentration or the concentration of any other factor that regulates actin of motor
activity. We stipulate however that it is not a function of fluid velocity. Therefore,
the active stress in an isotropic fluid is a scalar quantity depending only on scalar
quantities. It therefore appears in the stress tensor must like the pressure, as ȑB Ȃ JK.
In this section, we will show that such a fluid cannot have any interesting dynamics
beyond a passive fluid to motivate the need for the broken symmetry of a nematic
active fluid.

Augmenting the stress tensor with the active stress, we have

ȑ JK = −QȂ JK + �ȅWJK + ȑB Ȃ JK. (12.1)

As a reminder, WJK = (∂JWK + ∂KWJ)/� is the symmetric part of the velocity gradient
tensor. Apparently, from the definition of the stress tensor, the active stress is in-
distinguishable from the hydrostatic pressure, since they always appear together as
a sum. Let us investigate this further by writing the equation of motion with the new
stress tensor (again, assuming the dynamics are intertialess).

ȅ∂K∂KWJ − ∂J(Q − ȑB) = �. (12.2)

As a step in exposing the active stress independence of the dynamics, we take the
curl of both sides of the equation.

ȃ LMJ∂L (ȅ∂K∂KWJ − ∂J(Q − ȑB)) = ȅ∂K∂K ȗJ = �, (12.3)
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where we have defined the curl of the velocity field as the vorticity, ȗJ (not to be
confused the the antisymmetric part of the velocity gradient tensor, ȗJK). This tells
us that the dynamics of the vorticity are given by

∂K∂K ȗJ = �, (12.4)

meaning that the motion is entirely determined by the boundary conditions.

Now, we will take the divergence of both sides of the equation of motion.

∂J (ȅ∂K∂KWJ − ∂J(Q − ȑB)) = ȅ∂K∂K[∂JWJ]− ∂J∂J(Q − ȑB) = �. (12.5)

The bracketed term is zero for an incompressible fluid by the continuity equation.
Thus, the difference between the pressure and active stress are set by

∂J∂J(Q − ȑB) = �. (12.6)

This equation must hold regardless of what the velocity field is to enforce incom-
pressibility. Therefore, the quantity Q− ȑB is set entirely by incomressibility and the
active stress can have no effect on the fluid dynamics that is distinguishable from the
hydrostatic pressure. So, we cannot really model the cortex as an active incompress-
ible isotropic fluid because this is indistinguishable from a non-active fluid.

12.2 Active nematic viscous fluid

The cortex consists of crosslinked filaments of actin. It therefore stands to reason
that it is not isotropic because it consists of these stick like structures. We can define
a local vector, called a director that describes the average orientation of the filaments
in a small volume element. We will call this vector OJ and specify that it is a unit vec-
tor (OJOJ = �). We could define the local order in terms of OJ itself, but insteadwewill
consider the case where the sign of the direction of the director is immaterial. Phys-
ically, this means that the “sticks” in the fluid do not have arrowheads; pointing in
the positive Y direction is the same as pointing in the negative Y direction. In this
case, we need to construct a nematic order parameter that respects this nondirec-
tionality. As shown by deGennes in the study of liquid crystals, this order parameter
is a rank 2 tensor that can be constructed from the director as

2JK = 4
(

OJOK −
�
� Ȃ JK

)
. (12.7)

Here, 4 is the magnitude of the local order. The nematic order parameter is sym-
metric and traceless.

Now thatwe have this order parameter that describes the fluid, we no longer have
the isotropy we enjoyed when writing down the stress tensor for a simple fluid. We
need to add an extra term to the stress tensor that takes into account nematic order.

ȑ JK = −QȂ JK + �ȅWJK + ȑnematic
JK . (12.8)
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Wewill assume that we are above a critical temperature such that the filaments tend
to be disordered. In other words, in a relaxed, equilibrium state, the order parameter
tends toward zero. We might then write the nematic stress as a Taylor series about
the 2JK = � state, noting that the first order term should vanish because the nematic
stress is minimal with 2JK = �.

ȑnematic
JK = "JKLM|2LM + #JKLMNO∂L∂M2NO. (12.9)

From symmetry arguments and other approximations we will not go into here, the
higher order tensors in the expansion can be reduced to scalars. As is traditionally
done, we can define constants Ȁ�, ȕ , and - and write the passive nematic stress as

ȑnematic
JK = Ȁ�(ȕ − -∂L∂L)2JK. (12.10)

Here, ȕ is referred to as an inverse susceptability and - is related to the Frank elastic
constants from the theory of liquid crystals. The coefficient Ȁ� is an Onsager coeffi-
cient. We will not go into the details of these terms here (and this hand-wavy Taylor
series expansion is not a careful derivation at all), but we write it this way ebcause
this is how it appears in the literature. So, the stress tensor for a passive nematic
viscous fluid is

ȑJK = −QȂJK + �ȅWJK + Ȁ�(ȕ − -∂L∂L)2JK. (12.11)

Now, wewill write the active stress in terms of the order parameter. We canwrite
it to linear order as a Taylor expansion.

ȑBDUJWF = ȑ �
B ȂJK + ȑB2JK. (12.12)

The first term describes the isotropic contraction due to active stresses. This is the
same term as in the isotropic case and is indistinguishable from the pressure. We
will therefore absorb it into the pressure and define ɠ = Q − ȑ �

B . The last term is
directional stress exerted along the nematic order. So, our stress tensor for an active
nematic fluid is

ȑ JK = −ɠ Ȃ JK + �ȅWJK + Ȁ�(ȕ − -∂L∂L)2JK + ȑB2JK. (12.13)

The equation of motion is then, considering again the interialess limit for an incom-
pressible fluid,

∂K ȑJK = � = −∂J ɠ + ȅ∂K∂KWJ + Ȁ�(ȕ − -∂L∂L)∂K2JK + ∂K(ȑB2JK). (12.14)

12.3 Two-and-one-dimemsional active nematic fluid

In homework 5, you will derive the equation of motion for an active nematic fluid
that is confined to two dimensions. You will then make some assumptions about the
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symmetry of the flow to reduce the result to a one-dimensional equation. This is the
equation used in theMayer, et al. paper to describe the cortex dynamics. Specifically,
you will derive that

−ȅ∂�
Y WY + ȁWY = ∂Y ȑB, (12.15)

where ȁ is a friction coefficient. This equation means that gradients in active stress
drive cortical flow against viscous dissipation and frictional losses.

Note that 2JK does not appear in this equation. Nonetheless, to derive the equa-
tion ofmotion for the cortex, we do need to explicitly take into account nematic order.
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