
BE 159 Winter 2019
Homework #3

Due at the start of class, February 13, 2019

Problem 3.1 (A simple genetic oscillator with coupling).
This problem was inspired by Julian Lewis’s 2003 paper entitled “Autoinhibition with
Transcriptional Delay: A Simple Mechanism for the Zebrafish Somitogenesis Oscillator.”
In our discussion of the Soroldoni, et al. paper and in the associated lecture, we did
not discuss how the genetic oscillator may work, opting instead to discuss the (very
important)Delta-Notch pathway for signaling between neighboring cells. It has been
postulated that the oscillations in the zebrafish presomitic mesoderm come from a
very simple genetic circuit. In particular, two hairy/E(spl)-related (her) genes, her1
and her7, show oscillations. Interestingly, the protein product of these genes inhibit
the expression of the genes themselves. So, a simple genetic circuit arises, in which
a her gene is autoinhibited. Furthermore, active Notch protein represses expression
of Delta in the same cell via the her genes. In this problem, we will model the core
oscillator made up of the autoinhibitory her circuit (show in in black in Fig. 1) and
the coupling of oscillators in neighboring cells by Delta-Notch signaling.
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Figure 1: Self-regulation of her genes. Her protein represses transcription of
her mRNA.

In our analysis, we will neglect the multi-step process of Delta-Notch signaling
and the ensuing repression of expression of her (depicted in gray in Fig. 1) and instead
model it as direct repression of her expression in a cell due to Delta in its neighbor
(depicted in red in Fig. 1). Most cells in the PSM have many neighbors, all of which
contribute to the dynamics, but we will consider only two cells for illustration and
for simplicity.

a) As usual, we will describe the dynamics of this circuit with differential equa-
tions. Let m1 be the number of her mRNA molecules in cell 1, and let p1 be
the number of Her protein molecules in cell 1. The variables m2 and p2 are
similarly defined. Explain in words why the following differential equations
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are reasonable choices to model the genetic circuit in Fig. 1.

dp1

dt = β pm1 − α pp1, (3.1)

dm1

dt = β m f(p1)g(p2)− α mm1, (3.2)

dp2

dt = β pm2 − α pp2, (3.3)

dm2

dt = β m f(p2)g(p1)− α mm2, (3.4)

where the Greek parameters are all positive constants and f(p) and g(p) are
arbitrary dimensionless decreasing functions.

b) We will first consider a single her oscillator alone with no coupling to neigh-
boring cells; i.e., we take g(p) = constant. Prove that this system cannot have
oscillations, regardless of what f(p) is. Hint: You can use a consequence of
the Bendixson-Dulac theorem, which states that the dynamical system

dx
dt = P(x, y) (3.5)

dy
dt = Q(x, y) (3.6)

has no oscillatory solutions if the quantity

∂P
∂x +

∂Q
∂y (3.7)

always has the same sign.

c) The repression of expression of her1 is accomplished by a dimer of Her pro-
teins. Given this, why might the following function be a reasonable choice for
f(p)?

f(p) = k2
c

k2
c + p2 . (3.8)

d) As you may have seen if you did the supplementary reading for the Soroldoni
paper, delay of regulation by genetic circuits can play a major role in the trans-
mission of signals from one cell to the next. Naturally, they can also play a
role in the timing of gene regulation within individual cells. It stands to reason
that the amount of mRNA does not immediately affect the rate of production
of protein. The mRNA must first be transported out of the nucleus and then
be processed for translation. So, we assign a time delay τ p to this process.
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Similarly, the protein cannot immediately regulate expression of the mRNA,
as it must enter the nucleus and bind to the appropriate operator. So, we as-
sign a time delay τ m to this process. Finally, there is a time delay τ d associated
with her repression due to Delta-Notch signaling. For simplicity, we will take
τ p ≈ 0, thereby only considering time delays in repression. Because it is of in-
terest in analysis of coupling, wewill also assume that τ m for two different cells
need not be equal. We therefore have a system of delayed differential equations,

dp1(t)
dt = β pm1(t)− α pp1(t), (3.9)

dm1(t)
dt = β m f(p1(t − τ m,1))g(p2(t − τ d))− α mm1(t), (3.10)

dp2(t)
dt = β pm2(t)− α pp2(t), (3.11)

dm2(t)
dt = β m f(p2(t − τ m,2))g(p1(t − τ d))− α mm2, (3.12)

where the time dependence on each variable is now explicit. Going forward,
we will use

g(p) = kt

kt + p . (3.13)

Nondimensionalize equations (3.9) through (3.12), using equation (3.8) for
f(p) and equation (3.13) for g(p), to get

1
γ p

dp̃1

d̃t
= β m̃1(̃t)− p̃1(̃t), (3.14)

1
γ m

dm̃1

d̃t
=

1(
1 +

(
p̃1(̃t − 1)

)2
) (

1 + κ p̃2(̃t − τ )
) − m̃1(̃t), (3.15)

1
γ p

dp̃2

d̃t
= β m̃2(̃t)− p̃2(̃t), (3.16)

1
γ m

dm̃2

d̃t
=

1(
1 +

(
p̃2(̃t − τ 12)

)2
) (

1 + κ p̃1(̃t − τ )
) − m̃2(̃t), (3.17)

where γ p, γ m, β , κ , τ , and τ 12 are dimensionless constants. Be sure to write
expressions for these constants. Give a physical meaning for γ p and γ m. Note
that we have reduced the number of parameters from nine to six. Henceforth,
as you are working through the problem, you can drop the tildes for notational
convenience.
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e) We have now conveniently nondimensionalized the governing equations, and
we return for a moment to analyze the case of a single oscillator (κ = 0). If
γ p and γ m are very large, the left hand sides of the dimensionless dynamical
equations are close to zero. Thus, if there are two solutions for the steady
states of equations (3.14) and (3.15), the system can oscillate between the two
steady states. Show that two steady states exist for β > 2, but not otherwise.
Hint: When working out the steady states, consider p̃(t) = p̃b and p̃(t− 1) =
p̃a, with similar definitions for m̃a and m̃b.

f ) We have demonstrated that with time delay, we can get oscillations from a self-
repressing gene. In fact, the time delay is crucial for the oscillation. Now, let’s
see the oscillations! Numerically solve equations (3.14) and (3.15) for various
values of the parameters γ p, γ m, and β . For simplicity, assume γ p = γ m. For
your initial conditions, assume that mRNA and protein are both absent and
then her1 is suddenly available for transcription at time t = 0. Plot your results
and comment on them. In particular, what must be true of the magnitude of
γ m and γ p in order to get oscillations, and what does this mean physically?
Hint: You do not need to do any fancy integration techniques for these DDEs.
You can just use simple Euler time stepping. I wrote a Python script to do this,
and it appears at the end of this problem statement. You can use it, or use it as
a basis for your own code in whatever language you like.

g) We will now investigate how coupling serves to bring the oscillators into syn-
chrony. We will consider τ 12 ̸= 1, which means that the oscillators in the re-
spective cells have inherently different periods, so they should be out of phase
without coupling. We will numerically solve equations (3.14) through (3.17)
with nonzero κ . For this, we will take γ p = γ m = 20, β = 3, κ = 1, and
τ = 1.25. What do the latter two choices mean physically?

For your initial conditions, assume both cells are completely absent of her
mRNA and protein and the her gene suddenly become transcriptionally active
at time t = 0. Investigate how coupling brings the oscillators into phase by
numerically integrating equations (3.14) through (3.17) for various values of
τ 12.
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1 import numpy as np
2

3 import bokeh.layouts
4 import bokeh.plotting
5 import bokeh.io
6

7 # Useful functions for integration
8 def f(p):
9 return 1.0 / (1.0 + p**2)
10

11 def dp_dt(m, p, gamma_p, beta):
12 return gamma_p * (beta * m - p)
13

14 def dm_dt(m, p, gamma_m):
15 return gamma_m * (f(p) - m)
16

17 # Function to perform solution
18 def solve_her_one_oscillator(
19 gamma_p=20.0, gamma_m=20.0, beta=3.0, dt=0.001, t_stop=30.0):
20

21 # Number of indices to go back for time unit (useful for delays)
22 i_time = int(1 / dt)
23

24 # Time points (start -1 time unit so we can handle delays)
25 t = np.linspace(-1, t_stop, int((1 + t_stop) / dt))
26

27 # Initialize output arrays
28 m = np.zeros_like(t)
29 p = np.zeros_like(t)
30

31 # Do Euler stepping
32 for i in range(i_time, len(t)-1):
33 m[i+1] = m[i] + dt * dm_dt(m[i], p[i - i_time], gamma_m)
34 p[i+1] = p[i] + dt * dp_dt(m[i], p[i], gamma_p, beta)
35

36 return t, m, p
37

38

39 if __name__ == '__main__':
40 # Run the calculations for small and large gamma
41 t, m_small, p_small = solve_her_one_oscillator(gamma_p=2.0,
42 gamma_m=2.0,
43 t_stop=25.0)
44 t, m_large, p_large = solve_her_one_oscillator(gamma_p=20.0,
45 gamma_m=20.0,
46 t_stop=25.0)
47

48 # Set up plots
49 p1, p2 = [bokeh.plotting.figure(plot_height=200,
50 plot_width=450,
51 x_axis_label='dimensionless time',

5



52 y_axis_label='m, p',
53 x_range=[t.min(), t.max()])
54 for _ in [1, 2]]
55 p1.x_range = p2.x_range
56 p1.y_range = p2.y_range
57 p1.title.text = 'Single oscillator, γp = 2, γm = 2, β = 3'
58 p2.title.text = 'Single oscillator, γp = 20, γm = 20, β = 3'
59

60 # Add glyphs
61 p1.line(t, m_small, line_width=2, line_color='dodgerblue',
62 legend='m')
63 p1.line(t, p_small, line_width=2, line_color='tomato',
64 legend='p')
65 p2.line(t, m_large, line_width=2, line_color='dodgerblue')
66 p2.line(t, p_large, line_width=2, line_color='tomato')
67

68 # Display
69 bokeh.plotting.output_file('single_oscillator.html')
70 bokeh.io.show(bokeh.layouts.gridplot([p1, p2], ncols=2))

her_circuit_single_oscillator.py
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