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5 Delta-Notch signaling

During development, cells need to communicate with their nearest neighbors to en-
able differentiation. The Delta-Notch pathway is central to this end. We will see
this when we discuss the Soroldoni, et al. paper, in which Delta-Notch signaling
couples genetic oscillators in neighboring cells.

5.1 Molecular biology of the Delta-Notch signaling system

Delta-Notch signaling provides a mechanism for neighboring cells to communicate
with each other. The molecular mechanism is shown in Fig. 5. Notch is a trans-
membrane protein that is the receptor for another transmembrane protein Delta.
When a cell is expressing Notch and its neighbor is expressing Delta, Delta binds
Notch, which results in a conformational change. This enables proteolytic cleav-
age of Notch, resulting in the Notch intracellular domain (Nicd) detaching from the
membrane complex. Nicd acts as a transcription factor. It is a co-activator with
Mastermind and a co-repressor with Hairless, in addition to having other binding
partners that control gene expression.
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Figure 5: Sketch of the molecular details of Delta-Notch signaling. The insides
of neighboring cells are shown in brown and the intercellular space is shown in
light blue. Taken from Bray, NVat. Rev. Mol. Cell Biol., 7, 678-689, 2006.
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Importantly, Nicd represses production of Delta. So, a cell that has a lot of
cleaved Notch will stop producing Delta. Thus, a cell expressing a lot of Delta will
suppress Delta expression in the neighboring cell by activating Notch in the neigh-
bor. A schematic of this process is shown in Fig. 6.
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Figure 6: Schematic of nearest-neighbor cell differentiation by Delta-Notch.
Delta expressed by the bottom cell activates Notch in the top cell. The activated
Notch in the top cell suppresses Delta in the top cell. Because there is no Delta
on the surface of the top cell, Notch is inactive in the bottom cell. Since Notch
is inactive, Delta continues being expressed in the bottom cell.

So, the Delta-Notch system enables a cell to access a cell fate and instruct its
neighbors 7oz to access the same fate.

5.2 Mathematical analysis of the Delta-Notch system

We will develop a simple model to describe the dynamics of the Delta-Notch sig-
naling between two nearest-neighbor cells. Let N, be the number of active Notch
molecules in cell 1 and D, be the number of Delta molecules, with N, and D, simi-
larly defined. We then write the dynamics as

dd_]\? = F(D,) — yy N, (5.1)
O~ 6V) ~ 1Dy (5.2)
T~ FD) — My (53)
dd_l? =G(N) — yp D (5.4)

We have defined y, and y,, to be the respective autodegradation rates of Notch and
Delta. The function F(D) describes how the Delta level in a neighboring cell affects
the Notch level. This function should be monotonically increasing, since more Delta
implies more active Notch. The function G(N) describes how the level of active
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Notch in a cell affects its Delta level. Since Notch represses Delta, this should be
monotonically decreasing.

5.2.1 Nondimensionalization

We will nondimensionalize these dynamical equations. this is the process of re-
defining variables and parameters so that each term in the system of ODEs has no
units. This also usually results in driving down the total number of parameters. We
define the following, with dimensionless quantities being either lowercase or marked
with a tilde.

t= 1t (5.5)
F(D,) = Fof(D,/Dy) (5.7)
N 1= Nol’l] (58)
D, = Dyd,, (5.9
with other variables similarly defined. After substitution and rearrangement, we get
, Fot
iy = = flda) = pymy (5.10)
0
: Got
dy = = g(m) — yprd, (5.11)
0
. Fot
ny = NL (dy) — yyTha (5.12)
0
: Got
dr = DL g(n2) — yprds, (5.13)
0
where the over-dot indicates differentiation by 7. Now, we choose 7 = y,' and

Ny and Dy such that lim, . f(d) = 1 and g(n = 0) = 1. We further choose
Fy = Ny/ 7 and Gy = D,/ 7. With these choices, we have

n = f(dy) — my (5.14)
dy=v(gn) —d) (5.15)
iy = fldy) — my (5.16)
dy = v (g(m) — d), (5.17)

where we are left with a single parameter, v = y,,/ 7y, the ratio of the decay rates of
Delta and Notch.

31



5.2.2 Homogeneous steady state

We are interested in knowing if these two neighboring cells can differentiate from
each other. We therefore wish to find a homogeneous steady state, n; = n, = ny
and d; = d, = d,, and test its stability. If this homogeneous steady state is unstable
(i.e, if the dynamical system “runs away” from the homogeneous steady state upon
a small perturbation), we expect the cells to be able to differentiate. If it is stable,
they cannot spontaneously differentiate.

To find the steady state, we solve the system of equations with all time derivatives
set to zero. Le., we wish to solve

fldo) —np =0, (5.18)
g(l’lo) — d() =0. (519)

The first equation gives nyp = f(d,), so the second equation tells us we must have
g(f(dy)) = do. We will write g (f(x)) as gf(x), where gf(x) is called the composi-
tion of the functions g and f. Now, f(x) is a monotonically increasing function and
g (x) is a monotonically decreasing function, so gf(x) is a monotonically decreasing
function. So we have that gf(d)) is monotonically decreasing toward zero while the
function /(dy) = d, is monotonically increasing from zero. This means that these
two functions cross exactly once, so there exists a #nigue homogeneous steady state.

5.2.3 Linear stability analysis

To test the stability of the homogeneous steady state, we turn to linear stability
analysis. The basicidea is to linearize the right hand sides of the ODEs by expanding
them in Taylor series to first order about the homogeneous steady state. The result
is a linear dynamical system which is readily solved by computing the eigenvalues.
If any of the real parts of the eigenvalues is positive, the homogeneous steady state
is unstable, since the concentration of one of the species will, at least close to the
homogeneous steady state, grow exponentially.

Let ny, dj be the homogeneous steady state. We take a small perturbation off of
this steady state such that

ny; = ng + ony (5.20)
d\ =dy + od, (5.21)
n, = ny+ on, (5.22)
d\ = dy + 6d,, (5.23)
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where u = (0ny, dd;, 6ny, 6d,) is a small perturbation about the homogeneous
steady state. We expand the functions f(d) and g(n) to first order in the pertur-
bation.

fldo) = f(do) + f'(do) 8dr + O ((6d2)7) , (5.24)
g(my) = g(no) + g'(no) ény + O ((6n1)?) , (5.25)

and so on. We define fy = f'(dy) and gy = g’(no) for notational convenience. Then,
to linear order in the perturbation, we have

dit 5111 :ﬁ)édz - 6]’11 (526)
d
d_t 5(11 =V (go(sn] - 561’1) (5'27)
d
d_[ (Sl’lz :fo(Sdl — 5]’12 (528)
d
” ody = v (goony — od,) . (5.29)
This can be written in matrix form as
d%u =A-u, (5.30)

with

-1 0 0 fo
_|vge —v 0 O
A= 0O fo -1 0
0 0 vgy —v

(5.31)

It is useful to remember that the sum of the eigenvalues of a matrix is given by the
trace and the product of the eigenvalues is given by the determinant.

trA=-2(1+v) (5.32)
detA = 1> (1-f5g7) . (5.33)

We can directly compute the eigenvalues by computing the characteristic polyno-
mial.

(1+ 22 (v +4) - vf3g=0 (5.34)
Therefore, one pair of eigenvalues is given by the solutions of

(L+4) (v + 1) = vfogo, (5.35)
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and the other pair by solutions of
(I+2)(v+1)=—vfogo. (5.36)

These are all quadratic equations, which can be solved to give

/11:—1—;”(1+\/1—(1:L_—Vy)2(1—f0g0)>, (537)
12:—1;”(1—\/1—ﬁ<1—ﬁ)g0)>, (5.38)
/13:—1—;V<1+\/1—(1j_—yy)2(1+f0g0)>, (5.39)
,14:—1;’“(1—\/1—%(1#0&)). (5.40)

Clearly, eigenvalues 4, and 1; have negative real parts. For 1, to have a positive real
part, we must have

fogo > 1. (5.41)

This is not possible since recall that f > 0 and gy < 0, so fogo < 0. So, the only
eigenvalue that can have positive real part is 14. This happens when

fogo < —1. (5.42)

This condition must be met for the homogeneous steady state to be unstable. This
tells us that either f(d), g(n), or both must be steep functions near the steady state.
This implies cooperativity, which we will discuss more explicitly in a simple limit in
section 5.2.5.

5.2.4 Linear stability in the v > 1 regime

To make more analytical progress, we consider the case where v > 1, which is to
say that the Delta dynamics are much faster than the Notch dynamics. We note that
the terms multiplying v in equations (5.15) and (5.17) must be of order v~! ~ 0,
since all of the variables have been scaled to unity. This means that g(n,) ~ d, and
g(ny) ~ d,. With this approximation, we can reduce the dynamical system to two
equations.

n = fg(ny) — ny (5.43)
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n = fg(n) — ny. (5.44)

We can again perform linear stability analysis, defining now

dfg(n)
= —— 4
f&o dn |, (5.45)
We get
d (én -1 fgo on,
— = : . 4
dt ( 5712) (f g —1 ony (5.46)
The sum of the eigenvalues of this linear stability matrix is 4, + 4, = —2, implying

that at least one of the eigenvalues has a negative real part. The product of the eigen-
values is given by the determinant, or 4; 4, = 1 — (fgo)>. Since at least one of the
eigenvalues has a negative real part, we must have 4,4, < 0 to have an instability.
So, we must have (fgo)> > 1, or fgo < —1, since fgo < 0. This tells us that the
composite function fg(x) must be steep.

5.2.5 Cooperativity inthe v > 1 regime

We will model f(x) and g(x) as Hill functions to gain some more insights into the
requirements for instability.

X"

fx) = PR (5.47)
b
8 =3 (5.48)
Then, we have
[b/(b+x")"
falx) = a+ [b/(b+ xm)])" (5.49)
From this, we can compute fg, as
_dfg|  _ anmg 5y [b/(b+ )]
feo=-31 =3 PRETREE (5.50)
x=x (a+ [b/(b+x5)]")

where we are calling x, the homogeneous steady state. We compute the differential
of this function for ny = n, = 1.
a*b?

f&o =~ (b +ab + axy)* (5:51)

Thus, we have that fg, can never have a magnitude greater than unity. Therefore, if
ns = ng = 1, we cannot have an instability. So, a requirement for instability of the
Delta-Notch system in the limit where Delta dynamics are much faster than Notch
dynamics is that we must have cooperativity, i.e., n; > 1, n, > 1, or both.
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