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10 Continuum mechanics II: conservation of momentum

10.1 Conservation of linear momentum

Recall the general conservation law,

∂U Ȍ = −∂J K J. (10.1)

Let’s take Ȍ = ȏWJ, the linear momentum density. The total linear momentum of a
volume element is

∫
E7 ȏWJ, so taking Ȍ = ȏWJ means that we are describing a con-

servation law for linear momentum. In this case, ∂U(ȏWJ) is a rank one tensor, so the
flux must be a rank two tensor. We will denote this flux as ɢJK, the total momentum
flux tensor. It is the flux of momentum density coming out of a volume element.
The statement of conservation of linear momentum, called the equation of motion,
is

∂U ȏWJ = −∂K ɢJK. (10.2)

We can split the total momentum flux tensor into two pieces. First, we have the
momentum flux due to material flowing in and out of the volume element. This is
ȏWJWK. The second part of the total momentum flux is all the other stuff, which we
will denote by ȑJK. This object, ȑJK, is called the stress tensor.

ɢJK = ȏWJWK + ȑJK. (10.3)

To be clear, the stress tensor contains all stresses suffered by a material, such as
pressure and shear stresses. The other part of the total momentum flux tensor is
momentum density that is transported by virtue of material moving in and out of the
volume element. Using this split total momentum tensor, we have

∂U ȏWJ = −∂K ȏWJWK − ∂K ȑJK. (10.4)

Applying the chain rule to terms on both sides of this equation gives

ȏ∂UWJ + WJ∂U ȏ = −ȏWK∂KWJ − WJ∂K ȏWK − ∂K ȑJK. (10.5)

Rearranging, we get

ȏ (∂U + WK∂K)WJ = −WJ[∂U ȏ + ∂K ȏWK]− ∂K ȑJK. (10.6)

The parenthetical termon the left hand side is thematerial derivative. The bracketed
term is zero by conservation of mass, cf. equation (9.22). Thus, we arrive at our
statement of conservation of linear momentum.

ȏ EWJ
EU = −∂K ȑJK. (10.7)
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10.2 Physical interpretation of the stress tensor

The stress tensor describes forces resulting from relative motion of a material. It has
units of force per area, or momentum flux. To see this, note that momentum has
dimension of .-/5. A flux introduces dimension of �/-�5. Putting it together, the
stress has units of ./-5�, or force per area.

Extensile stress, σxx

Shear stress, σxy

x

y

Figure 13: Depiction of extensile and shear stresses on a block of material.

To understand how it describes forces due to relative motion consider grabbing
a piece of material and stretching it, as in the top illustration in Fig. 13. The part of
the material to the left moves leftward and that to the right moves rightward. The
component of the stress tensor describing resistance to this mode of relative motion
is ȑYY.

Now consider a shearing motion, as in the bottom illustration in Fig. 13. The
component of the stress tensor describing resistance to this mode of relative motion
is ȑ YZ.

10.3 Constitutive relations

This is all fine and good, but can we write a mathematical expression for ȑJK so that
we can put it to use? An expression for the stress tensor is called a constitutive rela-
tion. A constitutive relation relates physical quantities in amaterial-specificway. We
already saw a constitutive relation in the last lecture, Fick’s first law, which relates
diffusive mass flux to a concentration gradient, KL

J = −.L%L∂JDL.

We stated Fick’s first law without proof, and the derivations constitutive rela-
tions are often nontrivial. We will explore constitutive relations in the this and the
next lecture and explore their meanings.
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10.4 Constitutive relation for a homogeneous elastic solid

We first consider a homogeneous elastic solid. The stress tensor is given in terms
in the strain tensor, which we will first characterize. Throughout the following dis-
cussion, bear in mind that we are talking about a homogeneous solid. This means that
deforming the solid in the Y-direction should be the same as deforming it in the Z-
direction.

10.4.1 Elastic strain tensor

We define by YJ the position of a piece of the solid in space. We then deform the
solid such that that same piece is now at position Y′J. We define the displacement,
VJ = Y′J −YJ. If VJ is constant across the solid, the solid is not being deformed; rather,
it is being translated in the direction of VJ. However, if VJ varies in space, we do have
a deformation. So, the quantity ∂JVK reflects local deformations in the solid.

To investigate themagnitude of deformations, we consider the differential squared
distance between neighboring points in the solid.

Eℓ� = EYJ EYJ. (10.8)

If we have a deformation, this distance changes by

Eℓ′� = EY′J EY′J. (10.9)

To get an expression for EY′J, we can use the chain rule.

E(Y′J − YJ) = EVJ = (∂KVJ)EYK, (10.10)

which gives

EY′J = EYJ + (∂KVJ)EYK. (10.11)

Then, we have

Eℓ′� = (EYJ + (∂KVJ)EYK) (EYJ + (∂LVJ)EYL)

= EYJ EYJ + (∂KVJ)EYK EYJ + (∂LVJ)EYL EYJ + (∂KVJ)(∂LVJ)EYK EYL

= Eℓ� + [∂JVK + ∂KVJ + (∂JVL)(∂KVL)] EYJ EYK, (10.12)

where in the last line we have renamed indices to collect terms multiplying EYJ EYK.
We can write this down as

Eℓ′� − Eℓ� = �ȃJK EYJ EYK, (10.13)
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where we have defined the strain tensor9 as

ȃJK =
�
� (∂JVK + ∂KVJ + (∂JVL)(∂KVL)) . (10.14)

Because it goes as the square of the differential displacement, the last term in the
strain tensor is small for small displacements. So we have, to linear order in ∂JVJ,

ȃJK ≈
�
�(∂JVK + ∂KVJ). (10.15)

10.4.2 Elastic stress tensor

We have established that the strain describes deformations of the solid. We can de-
rive a relationship between the stress tensor, which describes the forces necessary
to achieve the deformations, and the strain tensor using thermodynamic arguments.
Instead, we will just start with Hooke’s law, which is valid for small deformations.
As Hooke said, “ut tensio sic vis,” or the force is proportional to extension. Because
the stress tensor is a rank 2 tensor, as is the strain tensor, to write a linear relationship
between the two, most generally, we need a rank 4 tensor.

ȑ JK = $JKLM ȃLM. (10.16)

There are �� = �� entries in the tensor $JKLM. This looks really intimidating, but
by symmetry arguments, we can show that the entries are not all independent. For
example, because the strain tensor ȃJK is symmetric, ȃJK = ȃKJ. The stress tensor
must also show this symmetry, so therefore so must $JKLM. This implies that $JKLM =
$KJLM = $JKML. We will not go through all of the symmetry arguments here, but in the
end, we find that there are only two independent parameters. Generally, it can be
shown that a linear relationship between two rank 2 symmetric tensors that remains
invariant under change of coordinates has the form

ȑ JK = ȉ ȃLL ȂJK + �Ȋ ȃJK, (10.17)

where the constants ȉ and Ȋ are called the Lamé coefficients. This gives us our
constitutive relation for an elastic solid.

As is commonly done, is is convenient towrite the Lamé coefficients in a different
form. We define

ȉ =
&ȋ

(� + ȋ )(� − �ȋ ) , (10.18)

Ȋ =
&

�(� + ȋ ) , (10.19)

9Though they have similar symbols, this strain tensor ȃJK is not to be confusedwith the Levi-Civita
symbol ȃJKL.
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where & is called the Young’s modulus and ȋ is the Poisson ratio.10 The resulting
expression for the stress tensor is

ȑJK =
&

� + ȋ

(
ȃJK +

ȋ
� − �ȋ ȃLL ȂJK

)
, (10.20)

Wewill not derive it here, but the second law of thermodynamics dictates that& ≥ �
and −� ≤ ȋ ≤ �/�. Thus, the stress associated with an elastic deformation is of
order &ȃ .

10.4.3 Equation of motion for an elastic solid

Now that we have our constitutive relation, we canwrite the equation ofmotion from
the statement of conservation of linear momentum. The local velocity, WJ, is related
to the displacement as WJ = ∂UVJ. Thus, we can write

ȏ EWJ
EU = ȏ

(
∂�

U VJ + (∂UVK)∂K∂UVJ
)
= −∂K ȑJK, (10.21)

where the U’s denote time derivatives and are not summed over. Evidently, this is
a wave equation in the displacement. The dynamics describe elastic waves through
the solid. We know these waves as sound. The dynamics are usually very fast com-
pared to biological time scales of interest, so we usually neglect the left hand side of
the equation of motion. Typically with elastic solids, we will study only statics, as
governed by the constitutive relation itself, in this case, equation (10.20).

10.5 Constitutive relation for an isotropic viscous fluid

If we look at the expression for the elastic stress, we see that it scales like the displace-
ment, ȑ ∼ &ȃ . For a fluid, we would not expect this to be the case. If we displace
a fluid and then let it rest, we do not have to exert any more force to maintain the
displacement. Instead, we expect that the stress we need to exert on a fluid to move
it will be related to the rate at which we make deformations,

∂U∂JVK = ∂J∂UVK = ∂JWK, (10.22)

where WK = ∂UVK is the velocity at which the material is moving. In other words, if we
want to move a fluid more rapidly, it will require more force than to move it slowly.
The actual magnitude of the displacement will not matter; only the rate at which we
make displacements. The velocity gradient tensor can be written as

∂JWK =
�
�(∂JWK + ∂KWJ) +

�
�(∂JWK − ∂KWJ) = WJK + ȗJK. (10.23)

10There should be no confusion between the Poisson ration ȋ and the stoichiometric coefficient
for species L in chemical reaction M, ȋL

SM.
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Here, we have defined

WJK ≡
�
�(∂JWK + ∂KWJ) (10.24)

as the symmetric part of the velocity gradient tensor and

ȗJK ≡
�
�(∂JWK − ∂KWJ) (10.25)

as the antisymmetric part. Due to the symmetry of an isotropic fluid and conser-
vation of angular momentum (which we will not formally consider here), the stress
tensor must be symmetric, which means that ȗJK does not contribute to it.

We might also expect the stress to include the hydrostatic pressure, Q. After all,
pumps move fluids around by exerting pressure on them. So, we additionally have a
−QȂJK term in the stress tensor. For an isotropic viscous fluid, then, we have

ȑJK = −QȂJK + $JKLMWLM. (10.26)

Again, we use the fact that a linear relationship between two rank 2 symmetric ten-
sors that remains invariant under change of coordinates can be written with Lamé
coefficients.

ȑ JK = −QȂJK + ȉWLL ȂJK + �ȊWJK. (10.27)

We will define ȅ and ȅW such that Ȋ = ȅ and ȉ = (ȅW − �ȅ )/�. Then, we have

ȑ JK = −QȂJK + �ȅ
(

WJK −
WLL
� ȂJK

)
+

ȅW
� WLL ȂJK. (10.28)

The quantity ȅ is called the viscosity, or shear viscosity, and ȅW is called the bulk
viscosity. It is clear that ȅW determines the contribution of isotropic compression
to the stress. For am incompressible fluid, the continuity equation (9.25) gives that
WLL = ∂LWL = �, so the stress tensor is

ȑ JK = −QȂJK + �ȅWJK = −QȂJK + ȅ (∂JWK + ∂KWJ). (10.29)

10.6 Equation of motion for an incompressible isotropic viscous fluid

Now thatwehave the constitutive relation, we canwrite down the equation ofmotion
for an incompressible isotropic viscous fluid. This is the statement of conservation
of linear momentum.

EWJ
EU = −∂K ȑJK = ∂JQ − ȅ∂K∂KWJ, (10.30)
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This equation, together with the continuity equation, ∂JWJ = �, are known as the
Navier-Stokes equations. We can nondimensionalize this equation, choosing Y =
ℓỸ, U = Ȓ Ũ, WJ = 6W̃J, and Q = Q̃ ȅ6/ℓ. Here, ℓ and Ȓ are respectively length and
time scales of interest, and 6 is the characteristic velocity. The resulting equation is

ȏℓ�

ȅȒ ∂UW̃J +
ȏ6ℓ

ȅ W̃K∂KW̃K = ∂JQ̃ − ∂K∂KW̃J, (10.31)

where the derivatives are now with respect to dimensionless variables. We can col-
lect the constants to define dimensionless parameters, theReynolds number, 3F =
ȏ6ℓ/ȅ , and the Strouhal number, 4S = (ℓ/6)/Ȓ .

3F (4S ∂U + ∂KW̃K) W̃J = ∂JQ̃ − ∂K∂KW̃J. (10.32)

The Reynolds number is the ratio of the inertial energy, ȏ6�ℓ�, to the energy loss
due to viscous dissipation, ȅ6ℓ�. The Strouhal number is the ratio of the advective
time scale, ℓ/6 to any other pertinent time scale of interest, Ȓ . If 3F ≪ � and
3F 4S ≪ �, then the left hand side of the equation ofmotion is negligible compared to
each term in the right hand side. In cell and developmental biology, this is generally
the case. To satisfy us that this is indeed the case, we can estimate the Reynolds
number for processes in a developing embryo. The density of our material is close
to that of water, or ��� kg/m�. The smallest viscosity is that of water, which is about
��−� kg-m/s. The longest length scale we generally consider in early embryos is
about 1 mm = 10−� m. The fastest speeds could conceivably be that of the fastest
motor proteins, about 100 µm/s = 10−� µm/s. Putting this together gives a Reynolds
number of 3F = �.�. We have intentionally vastly overestimated this, since most
fluid-like embryonicmovementsmuchmore slowly, over shorter distances, and with
much higher viscosity. So, we are generally justified in neglecting the left hand side
of the equation of motion, and we have

∂K ȑ JK = �. (10.33)

We will talk in more depth about dynamics of isotropic incompressible viscous
fluids at lowReynolds numberwhenwe study theHe, at al. paper. In a future lecture,
we will look at complex fluid (those that are not isotropic, such as an actin cortex,
which is comprised of filaments) and active, meaning that the material can consume
energy (for example via ATP hydrolysis by motor proteins), which will use in the
papers we read about polarizing the one-cell C. elegans embryo.
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