# BE 159: Signal Transduction and Mechanics in Morphogenesis Justin Bois Caltech <br> Winter, 2019 

Caltech


Donna and Benjamin M .
Rosen Bioengineering Center

[^0]
## 12 Continuum mechanics III: active complex fluids

We have conservation laws for mass and linear momentum. In both cases, we showed that the conservation law is of the same form. The time rate of change of a quantity is given by the divergence of a flux, plus some generation term for nonconserved quantities. When written in the comoving frame (that is, using the material derivative), we can define the flux tensor we need to specify. For conservation of linear momentum, this flux tensor is the stress tensor. The specification of the stress tensor is called a constitutive relation, and we have reasoned our way to them thus far (really, without proof). Now, we will move on to active fluids, which are a central topic in the papers we will read and discuss on the polarization of the C. elegans zygote.

### 12.1 Isotropic active viscous fluid

Our immediate goal is to model the acto-myosin cortex of the developing C. elegans embryo. The cortex is an example of an active fluid, in that it can exert stresses upon itself. This is achieved through the activity of motor proteins that cross-link actin filaments. Working together, the motors serve to compress the actin meshwork. We therefore add an active stress to the stress tensor. We will define the magnitude of this active stress to be $\sigma_{a}$. In general, this can be a function of myosin motor concentration or the concentration of any other factor that regulates actin or motor activity. We stipulate however that it is not a function of fluid velocity. So, the active stress in an isotropic fluid is a scalar quantity depending only on other scalar quantities. It therefore appears in the stress tensor must like the pressure, as $\sigma_{a} \delta_{i j}$. In this section, we will show that such a fluid cannot have any interesting dynamics beyond a passive fluid to motivate the need for the broken symmetry of a nematic active fluid.

Augmenting the stress tensor with the active stress, we have

$$
\begin{equation*}
\sigma_{i j}=-p \delta_{i j}+2 \eta v_{i j}+\sigma_{a} \delta_{i j} . \tag{12.1}
\end{equation*}
$$

As a reminder, $v_{i j}=\left(\partial_{i} v_{j}+\partial_{j} v_{i}\right) / 2$ is the symmetric part of the velocity gradient tensor. Apparently, from the definition of the stress tensor, the active stress is indistinguishable from the hydrostatic pressure, since they always appear together as a sum. Let us investigate this further by writing the equation of motion with the new stress tensor (again, assuming the dynamics are intertialess).

$$
\begin{equation*}
\eta \partial_{j} \partial_{j} v_{i}-\partial_{i}\left(p-\sigma_{a}\right)=0 . \tag{12.2}
\end{equation*}
$$

As a step in exposing the active stress independence of the dynamics, we take the curl of both sides of the equation.

$$
\begin{equation*}
\varepsilon_{k l i} \partial_{k}\left(\eta \partial_{j} \partial_{j} v_{i}-\partial_{i}\left(p-\sigma_{a}\right)\right)=\eta \partial_{j} \partial_{j} \omega_{i}=0 \tag{12.3}
\end{equation*}
$$

where we have defined the curl of the velocity field as the vorticity, $\omega_{i}$ (not to be confused the the antisymmetric part of the velocity gradient tensor, $\omega_{i j}$ ). This tells us that the dynamics of the vorticity are given by

$$
\begin{equation*}
\partial_{j} \partial_{j} \omega_{i}=0, \tag{12.4}
\end{equation*}
$$

meaning that the motion is entirely determined by the boundary conditions.
Now, we will take the divergence of both sides of the equation of motion.

$$
\begin{equation*}
\partial_{i}\left(\eta \partial_{j} \partial_{j} v_{i}-\partial_{i}\left(p-\sigma_{a}\right)\right)=\eta \partial_{j} \partial_{j}\left[\partial_{i} v_{i}\right]-\partial_{i} \partial_{i}\left(p-\sigma_{a}\right)=0 . \tag{12.5}
\end{equation*}
$$

The bracketed term is zero for an incompressible fluid by the continuity equation. Thus, the difference between the pressure and active stress are set by

$$
\begin{equation*}
\partial_{i} \partial_{i}\left(p-\sigma_{a}\right)=0 \tag{12.6}
\end{equation*}
$$

This equation must hold regardless of what the velocity field is to enforce incompressibility. Therefore, the quantity $p-\sigma_{a}$ is set entirely by incomressibility and the active stress can have no effect on the fluid dynamics that is distinguishable from the hydrostatic pressure. So, we cannot really model the cortex as an active incompressible isotropic fluid because this is indistinguishable from a non-active fluid.

### 12.2 Active nematic viscous fluid

The cortex consists of crosslinked filaments of actin. It therefore stands to reason that it is not isotropic because it consists of these stick like structures. We can define a local vector, called a director that describes the average orientation of the filaments in a small volume element. We will call this vector $n_{i}$ and specify that it is a unit vector $\left(n_{i} n_{i}=1\right)$. We could define the local order in terms of $n_{i}$ itself, but instead we will consider the case where the sign of the direction of the director is immaterial. Physically, this means that the "sticks" in the fluid do not have arrowheads; pointing in the positive $x$ direction is the same as pointing in the negative $x$ direction. In this case, we need to construct a nematic order parameter that respects this nondirectionality. As shown by de Gennes in the study of liquid crystals, this order parameter is a rank 2 tensor that can be constructed from the director as

$$
\begin{equation*}
Q_{i j}=S\left(n_{i} n_{j}-\frac{1}{3} \delta_{i j}\right) . \tag{12.7}
\end{equation*}
$$

Here, $S$ is the magnitude of the local order. The nematic order parameter is symmetric and traceless.

Now that we have this order parameter that describes the fluid, we no longer have the isotropy we enjoyed when writing down the stress tensor for a simple fluid. We need to add an extra term to the stress tensor that takes into account nematic order.

$$
\begin{equation*}
\sigma_{i j}=-p \delta_{i j}+2 \eta v_{i j}+\sigma_{i j}^{\text {nematic }} \tag{12.8}
\end{equation*}
$$

We will assume that we are above a critical temperature such that the filaments tend to be disordered. In other words, in a relaxed, equilibrium state, the order parameter tends toward zero. We might then write the nematic stress as a Taylor series about the $Q_{i j}=0$ state, noting that the first order term should vanish because the nematic stress is minimal with $Q_{i j}=0$.

$$
\begin{equation*}
\sigma_{i j}^{\text {nematic }}=A_{i j k l} Q_{k l}+B_{i j k l m n} \partial_{k} \partial_{l} Q_{m n} \tag{12.9}
\end{equation*}
$$

From symmetry arguments and other approximations we will not go into here, the higher order tensors in the expansion can be reduced to scalars. As is traditionally done, we can define constants $\beta_{1}, \chi$, and $L$ and write the passive nematic stress as

$$
\begin{equation*}
\sigma_{i j}^{\text {nematic }}=\beta_{1}\left(\chi-L \partial_{k} \partial_{k}\right) Q_{i j} . \tag{12.10}
\end{equation*}
$$

Here, $\chi$ is referred to as an inverse susceptibility and $L$ is related to the Frank elastic constants from the theory of liquid crystals. The coefficient $\beta_{1}$ is an Onsager coefficient. We will not go into the details of these terms here (and this hand-wavy Taylor series expansion is not a careful derivation at all), but we write it this way because this is how it appears in the literature. So, the stress tensor for a passive nematic viscous fluid is

$$
\begin{equation*}
\sigma_{i j}=-p \delta_{i j}+2 \eta v_{i j}+\beta_{1}\left(\chi-L \partial_{k} \partial_{k}\right) Q_{i j} . \tag{12.11}
\end{equation*}
$$

Next, we will write the active stress in terms of the order parameter. We can write it to linear order as a Taylor expansion.

$$
\begin{equation*}
\sigma_{\text {active }}=\sigma_{a}^{0} \delta_{i j}+\sigma_{a} Q_{i j} \tag{12.12}
\end{equation*}
$$

The first term describes the isotropic contraction due to active stresses. This is the same term as in the isotropic case and is indistinguishable from the pressure. We will therefore absorb it into the pressure and define $\Pi=p-\sigma_{a}^{0}$. The last term is directional stress exerted along the nematic order. So, our stress tensor for an active nematic fluid is

$$
\begin{equation*}
\sigma_{i j}=-\Pi \delta_{i j}+2 \eta v_{i j}+\beta_{1}\left(\chi-L \partial_{k} \partial_{k}\right) Q_{i j}+\sigma_{a} Q_{i j} \tag{12.13}
\end{equation*}
$$

The equation of motion is then, considering again the interialess limit for an incompressible fluid,

$$
\begin{equation*}
\partial_{j} \sigma_{i j}=0=-\partial_{i} \Pi+\eta \partial_{j} \partial_{j} v_{i}+\beta_{1}\left(\chi-L \partial_{k} \partial_{k}\right) \partial_{j} Q_{i j}+\partial_{j}\left(\sigma_{a} Q_{i j}\right) \tag{12.14}
\end{equation*}
$$

### 12.3 Two-and-one-dimemsional active nematic fluid

In the homework, you will derive the equation of motion for an active nematic fluid that is confined to two dimensions. You will then make some assumptions about the
symmetry of the flow to reduce the result to a one-dimensional equation. This is the equation used in the Mayer, et al. and the Gross, et al. papers to describe the cortex dynamics. Specifically, you will derive that

$$
\begin{equation*}
-\eta \partial_{x}^{2} v_{x}+\gamma v_{x}=\partial_{x} \sigma_{a} \tag{12.15}
\end{equation*}
$$

where $\gamma$ is a friction coefficient. This equation means that gradients in active stress drive cortical flow against viscous dissipation and frictional losses.

Note that $Q_{i j}$ does not appear in this equation. Nonetheless, to derive the equation of motion for the cortex, we do need to explicitly take into account nematic order.


[^0]:    This document was prepared at Caltech with financial support from the Donna and Benjamin M.
    Rosen Bioengineering Center.

