In this document, I derive (in a rather lengthy, but hopefully expository, way) the governing equa-
tions for an isothermal active viscous nematic fluid in the absence of external fields. I will consider only
temperatures above the critical temperature for the isotropic-nematic transition. In this situation the
director does not necessarily persist throughout space. We use the tensorial nematic order parameter,

1
Qa/j = S(nang 3 504,6’)7 (0.1)

defined here for a uniaxial nematic liquid crystal. Note that I have used indicial notation, which I will
throughout, in which like Greek indices (representing directions x, y, and z) are summed over. Latin
indices are not summed over unless done so explicitly. See the appendix for useful relations for tensors
and corresponding syntax for other notation.
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I begin with the derivation of a more familiar system, an isotropic viscous fluid in which chemical
species may diffuse and undergo chemical reactions. This illustrates the method:

1) Write down the conservation laws for mass, linear momentum, and angular momentum.
2) Write down an expression for the entropy production rate.

3) Simplify the expression for the entropy production rate to enable identification of conjugate
thermodynamic fluxes and forces.

4) Expand the thermodynamic fluxes to linear order in the forces, honoring the symmetries of the
system and the Onsager reciprocal relations, to obtain the constitutive equations.

1 Illustrative example: diffusion in a viscous fluid

We consider here a multicomponent isotropic viscous fluid.



1.1 Mass conservation
Conservation of total mass is

¢ p = =04 pa, (1.1)

where p = ). p;, where p; is the density of species i. Using the chain rule on the right hand side, this
may alternatively be written as

(01 + v4.04)p = —pDava, (1.2)

where the left hand side is interpreted as the time derivative of the density of a fluid element in a
co-moving frame. It is convenient to define the time derivative of the fluid element in the co-moving
frame, the so-called material derivative,

d
E = at "‘ Uaaa. (13)

We can also write down the mass conservation relation for species ¢ as
dpi _

p % ; = —0aJia + My ZVkirk Vi (1.4)
k

where j; o is the mass flux of species ¢ with respect to the barycentric motion (ji.o = pi(via — va)),
m; is its molar mass, and vy; is the stoichiometric coeflicient of species ¢ in chemical reaction &, which
proceeds at rate ;. Using (1.1), this can equivalently be written in terms of the mole fractions, n;, of
the components.

dn; i .
Or N + OpgMiVy = ditz + 1;000q = —0y ];; + zk: Vit V1. (1.5)

The mass flux of the individual components satisfy

D> i =0. (1.6)

1.2 Linear momentum conservation
The statement of linear momentum conservation is

O (pva) = =0 [0ap + pravs], (1.7)

where 0,5 is the total stress tensor and the bracketed term is the total momentum flux tensor. The
left hand side is the rate of change of momentum and the right hand side is the sum forces acting on
the fluid (the total momentum flux due to flow). In the co-moving frame, this is

dv
p d7£1 = 0303, (1.8)
which is perhaps more transparent. It says that the rate of change of momentum in the co-moving
frame is given by the forces acting on the fluid.



1.3 Angular momentum conservation

Henceforth, it is convenient to define a small fluid element occupying volume V. The shape of the
fluid element may be distorted in time, but the total mass contained therein cannot!. The angular
momentum of the fluid element is?

/ d>X peapy T30y, (1.9)
1%

where €3, is the Levi-Civita symbol. The time rate of change of angular momentum is given by the
torque acting on the fluid element.

d

T d®x PEaBy TRV = / dSs €apy T3 05, (1.10)
1%

where dS, is a differential surface element with an outward pointing normal, and we have written the
expression in the co-moving frame.

1.3.1 Left hand side of angular momentum balance (1.10)

We consider first the left hand side of (1.10). We cannot trivially differentiate under the integral sign,
as V changes with time. We can, however, convert the integration over the volume with an integration
over the total mass m = pV, which does not change with time, provided we are in the co-moving frame.
Therefore, we can take the material derivative (0, + v,04) under the integral sign, giving

d 3 d d
G g’ d°X peasy Ty = X dm eagyTvy = [ dmeagy a4 TRV

dx

d dv

= | d®xpegsy — xgv :/ d*x eqpyt p7+/ d>x peqgv i (1.11)
/V apfy dt BYy v afytp dr v afyly dr

Using linear momentum conservation (1.8), the first integral becomes
a3 doy _ [ g3 ) 1.12
X €afyT8P ~q, = X €apy 305045 (1.12)

1% 1%
Using the fact that 0;x3 = vg and Oszg = ds8, the second integral becomes
/ d3x PEayVy (O + v505) T = / dx PEapyVy (Vg + V5058) = 2/ d3x PEB VBV - (1.13)
1% 1% 1%

Now, the tensor vgv, is symmetric, so €,3,v3v, = 0, and thus the integral vanishes. Therefore, the
angular momentum balance is

/dSXEOé,g,yxgagO‘,yg:/dS(s €afy TP Trys- (1.14)
14

'T just stated the results of conservation of mass and linear momentum, which are often derived using the concept of
a small volume element. They are more familiar, so I just stated them without going into detail on their derivation.
2In perhaps more familiar notation, this is fv d®xx x pv.



1.3.2 Right hand side of angular momentum balance (1.10)

Considering now the right hand side, we can use the divergence theorem to convert the surface integral
to a volume integral.

/d5’5 €aBy T O~s :/ dgxeam@(;azﬁavg. (1.15)
\%

Again using the fact that Jszg = d53, we can write the integrand as

Capy 0525075 = €apr (015055 + 15050+5) = €apy(0yp + 505045)- (1.16)

1.3.3 Result of angular momentum conservation: symmetry of the stress tensor

Equating our new left and right hand sides of (1.10),

/ d3x 6a57x5(950'75 = / d®x eam(aﬁ,g + 56585075) = / d3x €aByO~B = 0. (1.17)
1% 1% 1%
This must be true for any arbitrary volume element V', so

€apy0yp = 0. (1.18)

Using properties of the Levi-Civita symbol,

€afy = —€ayB = —€yBa; (1.19)
SO
—€y8a0,8 = 0. (1.20)
Applying €5,4/2 to both sides gives
1
—3 €ouatyfalnp = —af;”u =0, (1.21)

which means that 0,4 is symmetric. This result is true for an isotropic liquid (where we have neglected
rotations of its constitutive particles), but is not in general true, e.g., for fluids with nematic or polar
order.

1.4 Energy conservation
1.4.1 Total energy balance

Let e be the energy density per unit mass of the fluid, such that the total energy in a fluid element
of volume V' is f;, d®x pe. The time rate of change of energy in the fluid element is given by the sum
of the advective flux of energy out of the volume and the power imparted by body and surface forces.
We assume the fluid element is adiabatic (there are no temperature gradients in the fluid), so there is
no heat flux. Further, we do not consider here body forces, since we assume there are no fields acting
on the fluid. Therefore, the time rate of change of total energy in the fluid element in the co-moving

frame is3

d de
— | d*xpe= [ d&xp— :/dS 2BV 1.22
i ), X pe /V xpo 3 0aBVa, (1.22)

3Tn the stationary frame, the expression is 0 fv d®x pe = — f dSa pvae + f dSs (0ap — PUaVE)Va.
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where we have applied the technique of section 1.3.1 for taking the material derivative under the integral
sign. The right hand side is the power imparted by surface forces (force times velocity)*. Application
of the divergence theorem gives

d
/d3xpdi—/ dx® D300 pva- (1.23)
1% 1%

This must be true for arbitrary volume V, so

d
pd—i = 08003V (1.24)

1.4.2 Expression for internal energy

The per-mass energy density is given by the sum of the per-mass internal and kinetic energy densities,
or

€=U+ va0qs/2. (1.25)

Substituting this expression into the expression for total energy conservation (1.24) gives

d du dvg du
P a(u + VaVa/2) = p T + pua w "% + 1408048 = 03043Va = V008048 + 0030804 (1.26)

where we have use the chain rule and the equation for conservation of linear momentum (1.8). This
simplifies to

d
pd—qz = 04308Va- (1.27)

1.5 Entropy production rate

In order to identify the thermodynamic fluxes and forces, we need to write down the entropy production
rate of our fluid element. The entropy production rate is due to irreversible (“dissipative”) processes
within the fluid element. The total entropy in the fluid element can also change due to reversible
processes. We shall call the rate of entropy production in the fluid per unit volume per unit time o,
not to be confused with the stress tensor, o,g. Writing an entropy balance for a fluid element,

ds

p S = ~dujsato (1.25)

where s is the per-mass entropy and jg is the entropy flux to the surroundings. It is clear then, that
the change in entropy by irreversible processes is given by o. Our goal is to write an expression for
pds/dt in the form of the above equation in order to identify o.

4A subtle point: In this analysis, we have neglected the so-called kinetic energy of diffusion. Foreseeing that we will
neglect inertial terms in biophysical applications this is justified. For discussions, see section 11.4 for de Groot and Mazur,
Non-equilibrium Thermodynamics.



1.5.1 The Gibbs relation

Using the combined first and second laws of thermodynamics, we can write the differential for the
per-volume (i.e., dV = 0) internal energy,

d(pu) = Td(ps) + 2 pidng, (1.29)

where the chemical potential is defined as p; = 0(pu)/0n;. We can therefore write the time rate of
change of the entropy in the co-moving frame as

d(ps) dpu dn;
T =—— — ; . 1.30
dt dt z; Cdt (1.30)
This is the so-called Gibbs relation.
1.5.2 Identifying o and js,
Applying the chain rule to the left and right sides yields
ds dp _ du dp dn;
T—+Ts ; . 1.31
PTG T gy = gy Ty~ 2 b (1.31)

2

Substituting the continuity equation (1.2), the species mass balance (1.5), and the expression for the
time rate of change of internal energy (1.27) gives

ds i
Tp pri TpsOava = 0a803Vq — pulava + Zl: 7% <ni8ava + 0 ]rzr: — zk: z/kz-rk> . (1.32)
Rearranging,
ds
Tp = |0ap+ (—pu+Tps + Zl: umi)%ﬁ] Dpva + Ei:ui ( , Lo Z Vkﬂ"k) (1.33)

We apply the chain rule to get

Jio _ o i Ji,ae  Jia Oafli. (1.34)
m m i

i i mg

g aa

Using this in our expression for the time rate of change of per-mass entropy density, we get

ds Jia
Tpg =—0a (Zui m}) +

- 3
2

Tap + (—pu+Tps+ > umz‘)f;aﬁ] Ipva

%

_ Z (j;: Oa i + 14 zk: Vm‘Tk> ) (1.35)
Comparing to (1.28), we have identified the entropy flux as
_ Ji,a
JSa = —= Z o (1.36)
7

and the entropy production rate as

<0a6 + (—pu+Tps + Z Mini)5a6> Vo — Z (‘fna Oafti + 1 Z V/Mk)] : (1.37)
i j ! k

(2

o= —

T




1.5.3 Consolidating the material flux terms

The fluxes j; o of the constituent species are not independent, being related by (1.6), which says that
the sum of the species fluxes is zero. If we arbitrarily define species 0 to be that which is most abundant
(though this abundance specification is not necessary), we can specify the fluxes of the other species
using (1.6).

Ji, Jo, Ji, > iz0 Jia Ji,
Z 2% D pi = zaa,uo-i-z T;ﬁ@a/ioz—Laam—FZ 2L O fi
1

my; m m m;
: i#0 0 i#0

= jiala (n’il - ::Z)) : (1.38)

i#0
Defining fi; = p;/mi — po/mo, we get
1 . _
o= T (aag + (—pu+Tps + Z uini)éa[g) 0Bva — ;jw Oufli — Zk: TEViili | - (1.39)
7 i 1,

The quantity Ay = ), vkipi is often called the affinity of species i in chemical reaction k.

1.5.4 The Ericksen stress

For reversible processes, 0 = 0. We can separate the entropy production rate into terms that are
reversible (do not contribute to o, even in the presence of chemical reactions or chemical potential
and velocity gradients) and irreversible (dissipative) terms that contribute positively to o. Inspecting
(1.39), we see that chemical reactions change the entropy production rate. Similarly, if a chemical
potential gradient exists, the flux j; o will be zero for reversible processes. However, if the velocity
gradient tensor dgv, is nonzero, we may have zero entropy production if

oap = (pu —Tps — Z i) (1.40)

(2

This is the reversible portion of the stress tensor (it does not contribute to dissipation), and we call it
the Ericksen stress.

055 = (pu—Tps — > pini)das = —Pdas, (1.41)

)

which in the simple case of an isotropic viscous fluid is just given by the thermodynamic pressure p.

1.5.5 The deviatoric stress

We define the portion of the stress that is responsible for entropy production the deviatoric stress, and
is given by

085 = 0ap — 055 (1.42)

This is the stress that contributes to dissipation. Using this definition in (1.39), we get

1 ) _
g = T Ugﬁaﬁva - Z]@a 6a,uz~ - Z TkAk . (1.43)
1#0 k



1.5.6 Splitting the stress tensor

It is convenient to split the stress tensor into a diagonal part, a symmetric, traceless part, and an
antisymmetric part.
. d,
Tag = 0ap0y,/3+ 655 + 0hg, (1.44)

«

where for this case of an isotropic fluid, o2 5 = 0, as we learned from analysis of angular momentum
conservation in section 1.3.3. We do the same with the velocity gradient tensor.

1 1
Opva = 0apdyvy/3 + | 5(0pva + Oavs/3) = dapdyvy| + 5(95va — davp)

= (5&587?}7/3 + Uga + Waa, (1.45)
where we have defined
1 1
Ups = 5(80105 + 0gvq) and wag = Q(ﬁavﬁ — 0gva) (1.46)

as the symmetric and antisymmetric parts, respectively, of the velocity gradient tensor, using some of
the relations listed in the appendix of this document. The latter is related to the vorticity by

(vorticity)o = (curl v)o = €08,080y = €agyWpy- (1.47)

Using tensorial identities and the fact that o 5 =0, we get

1 od,s -
Ugﬁagva =3 ol 0505 + ai§u5a. (1.48)

1.5.7 Final expression for the entropy production rate

Using the split stress and velocity gradient tensors, we arrive at the final expression for the entropy
production rate.

1[1 od,s o . _
=713 aiaﬁﬂv/j + Uigu/ga - Z]i’a Oafli — Z Ak | - (1.49)
i#0 k

g

1.6 Constitutive relations
1.6.1 Thermodynamic fluxes and forces

Investigating (1.49) reveals that the entropy production rate is given by the sum of conjugate thermo-
dynamic fluxes and forces. Let J7 be a thermodynamic flux and F7 be its conjugate force. Generically,
the entropy production rate is

o= JF, (1.50)
j

where J7 and F7 have the same tensorial character. At equilibrium the fluxes and forces vanish. Close
to equilibrium we may expand the fluxes to linear order in the forces.

¥ = "L, (1.51)
k
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where the tensorial character of L7* is properly chosen. The coefficients L/* must respect the symme-
tries of the system. This is called the Curie principle. Similarly, L% must be positive definite, since
the quadratic form

o=> JVF =) LI'F'FI (1.52)
j gk

must be positive by the second law of thermodynamics. These are related to the Onsager reciprocal
relations. Note also the the expansion coefficients can in general be a function of any of the intensive
properties of the system.

1.6.2 Identification of fluxes and forces

From (1.49), we can identify the fluxes and forces (modulo a constant factor of 1/7") and their tensorial
character.

flux force character
nylv /3 O~y scalar
Tk — Ay, scalar (Vk)
Ji,a — Ol polar vector (Vi # 0)
od,s ° .
T3 Uaf symmetric, traceless tensor

1.6.3 Expansion of fluxes

We carry out the expansions of the fluxes to linear order in the forces. The most general expansion is

05,/3 = L0y, — > L' A = > L Oufii + Liyiiag (1.53)
k i£0
re = L'0,0, — Z LKA — ZLgkfiaaﬂi + Lgf;&aﬂ vk (1.54)
j i£0
Jia = LE00y0, = N LI AL = ST LI 05 + LS g, Vi 0 (1.55)
k §#0
50 = L0y, — Y LIEAL = LY 0y + Ly, sitns. (1.56)
k i£0

I have called the expansion coefficients L and labeled the expansion coefficients with a superscript to
designate what thermodynamic forces they couple. The code is given below.

superscript  thermodynamic force description of thermodynamic flux

v 0~v compressive stress

7 Uy
Tk —Ay rate of chemical reaction k
fi —Ou i diffusive flux of species i
s Uag shear stress

The subscripts of the expansion coefficients L indicate their tensorial order.



1.6.4 The Curie principle

The Curie principle states that the the phenomenological expansion coefficients must honor the spatial
symmetry of the system. In particular, if a symmetry in the system exists, application of an orthogonal
transformation representing that symmetry must leave the expansion coefficients unchanged.

To codify this notion, we note that application of an orthogonal transformation R,z (with |R,5| =

+1) to a tensor Ti, ... results in a transformed tensor T/’W o

Ty = |RIF(RuaRupRpy -+ ) Tapy..., (1.57)

with € = 0 for polar tensors and ¢ = 1 for axial tensors. We will denote this transformation as
0’157__ = RT3.... (1.58)

If a tensor is invariant under a transformation R,g, T, Gy = RT4gy... = Topry-...

1.6.5 Application of the Curie principle: invariance under parity inversion

In the case of a simple isotropic fluid, the dynamics must be invariant to parity inversion, R,g = —0ag.
Therefore, for a tensor L of rank n,

L/

apy = RLagy.. = (=1)*""Lagy... = Lapy--. (1.59)

For the isotropic fluid, all € = 0. Therefore, all tensors with odd order must be zero.

Ly = Ll = pime = LI = 1% = LIS <o, (1.60)

1.6.6 Application of the Curie principle: invariance under arbitrary rotation

An isotropic fluid is also invariant under an arbitrary rotation. Let R,z be a rotation tensor (|R| = 1).
For scalars,

RL =1L (1.61)

is satisfied trivially, so all scalar coupling constants are, up to this point, unrestricted.

Polar tensors of order 1. Although we already showed them all to be zero, we consider first order
polar tensors, e.g., LY ., under arbitrary rotation. They should be invariant to this, so

RL, = La. (1.62)
This holds only if L, = 0, which is true of all polar tensors of first order, reiterating that
LY = predi = predi = phire = 0, (1.63)
Tensors of order 2. For second order tensors, we have
RLag = RuaRupLyw = Lag. (1.64)

We multiply each side of the equation by a tensor constructed from two arbitrary vectors a, and bg to
get the equality of two scalars.

RuaR,gLva0bg = Logaabp, (1.65)
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or
L,wRyuaaaR,pbg = LuyaLb; = Laﬁa'ab'ﬁ = Lagaabg, (1.66)

where we have now affected a rotation on a, and bg to get the rotated tensors al, and b’ﬁ. The above
expression indicates that L,ganbg is the sum of the bilinear invariants of a, and bg under rotation. The
only bilinear invariant of vectors is the dot product, a,b,. This implies that L,g = Ld,z. Explicitly,
with respect to the rotations,

Loy RyqaaRypbg = LR,o Ry paabsg = Liggaabs = Lagba, (1.67)
where we have used the property of an orthogonal transformation,
Ry oRyg = 0ap- (1.68)
Given this is the case for all second order tensors,
Lestiap = LY 0aptlas = 0, (1.69)
and Lg’gﬁa/g = L™**§ptap = 0, (1.70)
since w,g is traceless and symmetric. Furthermore, since 7, is also symmetric and traceless,
apOyvy = L*6050yvy and Ly5 Oyvy = L™ 6450,0y (1.71)
imply that L*Y = L*"* = 0. The remaining second order tensors are
LI = L1555, (1.72)

Note also that because Log = Ldng, Log contracted with any traceless tensor is zero.

Tensors of order 3. Although we already showed them both to be zero as a result of invariance under
parity inversion, for instructive purposes, we consider third order tensors under arbitrary rotation. We
take a similar strategy as for second order tensors.

RLaﬁ’Y - RuaRllﬁvaLuup = Laﬁ'y (173)
We multiply both sides by arbitrary vector a, and arbitrary tensor Bg.,.
RyaRygRoyLywpaaBpy = LagyaaBgy = Laﬁﬂ/a/oaB/ﬁy = LapgyaaBgy, (1.74)

which must be equal to the sum of the third degree invariants under rotation of a, and Bg,. The only
invariant is again a dot product of two vectors, or aq€qng,1y. Therefore,

Logy = Leagy. (1.75)
Given this fact,
LIS gy = L eqpryitgy = 0, (1.76)
since g, is symmetric. Finally,
L3 0yl = L eqp, Oy i, (1.77)
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which is an antisymmetric tensor. It must (when summed with other traceless symmetric tensors) be
a traceless symmetric tensor, 6%°. Therefore, L, 7 = 0, which we already knew from invariance under
parity inversion.

Tensors of order 4. We use the same strategy for a fourth order tensor, our only one being LZSB,Y 5
RLagvs = RuaRugRpyRes Lywpr = Lagys- (1.78)
Multiplying by arbitrary tensors A,z and B.s,
RyaRys Ry Bocs Lywpr Aap Brs = LaﬁvéAlaﬁB,ws = Lapys AapBys- (1.79)

Again, this expression must be equal to the sum of the fourth degree invariants under rotation.

LaﬁfyéAa,Bnyd = La/(iaﬁézﬁ + LbAgﬁBgﬁ + LCAaaBﬁﬁ. (1.80)
Therefore, we have
el 1 Lb .
Lapys = L | 500508y + 0ay085) = 5 0apdys | + 5 (0asdsy = Saydps) + L 0asdys. (1.81)

Now, we consider the product of the expansion coefficient with a traceless, symmetric tensor, fiaﬂ.

b

o o

ss 1 a 1 1
LgsysAap = L (2(%6% +0ay085) — 5 5&6575> Aas + =5 (005087 = darIp8) Aap

+ L6050,5Ang. (1.82)
Consider the last term,
LE50pdy5Ang = L80g Ay =0, (1.83)
since jlag is traceless. The second term is

LY . b .

5 (005087 = dar055) Aap = 5 (Apa — Aag) =0, (1.84)
since fiag is symmetric. Thus, we have
L3, 5A0p = L* (;(%a% + Gay0ps) — ;5«1&%) Aap=L° (;(Aév + Ays) - ;%afiaa)
= L%A.s. (1.85)

Finally, although it does not appear for an isotropic fluid, we consider the product of the expansion
coefficient with an antisymmetric tensor, A%;.

1 1 LY
LapysASs = L° (2«5@5% + 00 035) — 3 cwwa) Al + 5 (0as03y — Gar055) A5

+ LC(SOC/B(SW;A,%. (1.86)
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Consider the last term,
L 00p0y5AS5 = L 6apAS, =0, (1.87)

since AY 3 is traceless. The first term is

a 1 1 a a 1 a a 1 a
again because A2 5 is antisymmetric. Finally, the middle term is
Lb a Lb a a b pa
5 (0as0py = darydps) A5 = - (Afe — Aap) = —L7Agp. (1.89)

Therefore, for an antisymmetric tensor Agﬁ in a system that exhibits rotational invariance,

The result is a traceless, antisymmetric tensor. If this must be equal to a symmetric tensor, L = 0.

1.6.7 Updated expansion of fluxes after application of Curie principle

Renaming L* = L% we arrive at our updated force/flux relations.

0l /3 =L"0y0, — Y LAy (1.91)
k
re = L0y, — > LTI A; Yk (1.92)
J
Jiw=—3 LIidup; V#i (1.93)
J#0
55 = L*ligp. (1.94)

1.6.8 The Onsager reciprocal relations

The Onsager reciprocal relations restrict the values of the coefficients. I will not go into detail here,
but see de Groot and Mazur for discussion. They follow from the fact that the positive definiteness of
the entropy production rate and properties of the system with respect to time reversal. In particular,
we note that the positive definiteness of o requires that each term in its sum (i.e., each tensorial order)
be positive.

The shear viscosity. The easiest relation to see is L% > 0. We define
L% = 2n, (1.95)

where n(> 0) is known as the viscosity.

The bulk viscosity. In the absence of chemical reaction, the entropy must remain positive definite,
so L'’ > 0. We define

LY =, (1.96)
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known as the bulk viscosity.

The chemical reaction rates. The Onsager relations stipulate that when two forces that have
opposite signatures under time reversal couple, their expansion coefficients are of the same magnitude
and of opposite sign. The J,v, term changes sign under time reversal, but the chemical affinities Ay,
do not. Therefore, L™*¥ = —L""k. There is no stipulation on the sign of L"*".

While there is no stipulation on the sign of L™, positive definiteness of the entropy production
rate o requires L' < 0 and further than L™+ = L""t. We will absorb a negative sign into these
coefficients and redefine them, —L"*"5 — L7k75,

Diffusion. We now wish to write the last constitutive relation, j; o = —a0sfii, in a more useful form,
i.e., as a function of the mole fractions n; as opposed to fi;. I will not go through the details, since it
involves some complicated manipulations, but it is possible to make the transformation between Lfifi
and D;; such that

ji,a = — ZLfifjaaﬂj = ZDijaanj. (197)
J#0 J#0

(See de Groot and Mazur, chapter XI.) The diffusion coefficients D;; are in general functions of all the
intensive parameters of the system. Positive definiteness of the entropy production rate requires D;;
be positive definite, with D;; > 0 and D;; = Dj;.

1.6.9 Final constitutive relations

Using the results of the previous sections, we arrive at our final constitutive relations.

0-37/3 = nva'yv'y - Z CuAg (198)
k
rp ==Lk dyvy + > LTI A; Yk (1.99)
J
695 = 2nliag (1.100)
Jia = —M; ZDijaanjy (1.101)
J#0
with the stipulations that
77’1}7777LZ7I;;)D1'1' > 0 \V/k,i, (1102)

and Dij = Dji and L"kTi = [[ViTk,

1.7 Dynamical equations

To arrive at the dynamical equations, we first consider conservation of mass. Substitution of the
constitutive relation for the flux (1.101) into the conservation law for each species (1.5) yields

dni
dt

= —N;0qVq + O Z Dij 8anj + Z Vii Tk - (1.103)
J#0 k
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To write the remaining dynamical equations, we simply need to write the stress tensor.

Tas = 055 + 053 = G573 + 0ap0yy /3 — piag = 2nilap + (m Uy — ZL””AQ (1.104)

2
= 1n(0avs + 0gva) + ((17@ —3 77) Oyvy —p — Z L’”"’“Ak> daBs (1.105)
k

where momentum and energy conservation, respectively, are

dvg,
— 940 1.1
p & — 500 (1.106)
de 0B0aBY (1.107)
Prag — 87t '

If we make the assumption that D;; is diagonal with D;; = D;, that D; and n are constants, and
that the fluid is incompressible (J,v4 = 0), we arrive at familiar expressions, the advection-reaction-
diffusion equation and the active Navier-Stokes equations (noting that L'"* is typically zero, i.e.,
chemical reactions do not exert an active stress).

ddri‘i = D; Oani — niOaVa + zk: VEiTk (1.108)
p e _ 5 p+ S LA + 950500, (1.109)
dt k

2 Nematic liquid crystal above T, using (.3

We now derive the dynamical equations for a nematic liquid crystal above the critical temperature.
We neglect temperature gradients and we neglect body forces and external fields. For notational
convenience, in this section we will denote

5=d0 (2.1)

2.1 Nematic order parameters
2.1.1 The director

A nematic liquid crystal has associated with it a director, ns, a unit vector (nano, = 1) that points
along the direction of the local orientation of the molecules in the liquid crystal. The unit vector is
special in that any properties depending on it must be invariant under parity inversion. This is in
contrast to a polar fluid, in which the vector specifying the local orientation, p,, flips sign under parity
inversion.
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2.1.2 The tensorial order parameter

Below the critical temperature, a nematic liquid crystal is uniaxially ordered over long length scales.
Above the critical temperature, the nematic order varies more rapidly through space. We therefore
define a temsorial order parameter by

1
Qo =19 (nanﬁ —3 5a5> ; (2.2)

where S indicates the magnitude of the order parameter. The tensor order parameter if traceless and
symmetric. We will derive the dynamics in terms of Qo3 and its derivatives, though we could choose
to do so in terms of nong and nedng/dt, which can be a bit easier (see, e.g., Vertogen and de Jeu,
Thermotropic Liquid Crystals, Fundamentals, chapter 8).

2.2 Mass conservation

All the results derived in section 1.1 hold.

2.3 Linear momentum conservation

All the results derived in section 1.2 hold.

2.4 Angular momentum conservation

The expression given by (1.10) must now be modified to take into account the anisotropy in the fluid.

2.4.1 Total angular momentum density: analogous left hand side of (1.10)

The total angular momentum of the fluid element now has a component due to the rotation of the
anisotropic molecules. Let €, be the angular velocity of the rotation and I be the moment of inertia.
Then the rate of change of total angular momentum is

d

— [ d*x [peagyzpvy + IQ0)], (2.3)
a Jy

and the rate of change of total angular momentum is the material derivative of this expression.

2.4.2 Neglect of the I}, terms

We compare the size of the two terms on the left hand side of the integral angular momentum balance

(2.8). If @ is the molecular size of an anisotropic molecules, the moment of inertia of a single molecules
~ mia?, where my is the mass of a single molecule. Then, if there are N molecules per unit volume,

the per volume moment of inertia satisfies

2
Nmja 9

I~ ~ pa“, (2.4)

since p ~ Nmq/a®. Therefore, the second term on the left hand side of (2.8) is

110 ~ pa?|Q]. (2.5)
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Now, the first term is peagyzgv,. If U is the characteristic velocity of the fluid flow and L is the
characteristic length scale of the system (L > a, since this is a hydrodynamic theory), the time scale
associated with fluid motion is 7 = L/U. Therefore, the first term scale like

pxv ~ pLU ~ pL?/T. (2.6)

Since L > a, the second term associated with internal rotations is negligible provided the frequency
of the rotations || is not orders of magnitude greater than the characteristic flow frequency, 7=1. We
will ultimately neglect the contributions of I€2,, but we keep them for most of the derivation of the
dynamical equations for reference.

2.4.3 Nematic torque and the molecular field: analogous right hand side of (1.10)

In addition to the surface stress taken into account in the right hand side of (1.10), we also must include
torques related to alignment of the nematic order. Imagine that the nematic order is different from its
equilibrium value. The free energy density of the fluid then changes by pf4, the so-called distortion
free energy density. We define the molecular field to be the functional derivative of fy,

~ 0fa
5@&6.

H.p = (2.7)

With this definition, the per-volume torque is —eqysH,3Qs538 — €agsH Qs (this is a second order
tensorial analogue of a cross product). We must include this on the right hand side of the angular
momentum balance, giving

d

En d®x [pea,ngcgvy +1Q,) = /dS(gea,g,y T3 Oy — / d®x H,s (6047(5@55 + eaﬁgQ,yg) . (2.8)
14 v

2.4.4 Differential expression of angular momentum conservation

We know from section 1.3 that

d
/dS’geaﬁvxfg O~ g g d3x PEBy TRV = /V d®x €aBy0~B- (2.9)

Therefore, the integral expression for conservation of angular momentum (2.8) becomes

d
a ., BxIN, = /V d3x [6a57075 — H,g (€aysQsp + Eag(;Q,y(;)] . (2.10)

Now, we can use the same method as in section 1.3.1 to bring the material derivative under the integral
sign, since the moment of inertia is the weighted sum of masses of particles.

d .
— dSXIQa:/ dx IQ,. (2.11)

Using this relation, and the fact that angular momentum must be conserved for any arbitrary volume
V', we get the differential expression for angular momentum conservation.

IQ0 = €apy0y5 — Hoyg (€06Qsp + €aps@ns) (2.12)
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2.4.5 The antisymmetric part of the stress tensor

The antisymmetric part of the stress tensor can be computed from (2.12).

a 1 1
Tpv = 5 CpratyBalnp = —5 CpratafyOyp
I . 1
= _5 €ova Qo — 5 (GpuaeavéQdﬁ + EpuaeaﬁéQvé) H’yﬂ' (2'13)

This can be simplified using identities of the Levi-Civita symbol.

1 . 1
Uzy = ) €pva Qo — ) (HpBQuB - HuﬁQpB + H’prw - HwQ'yp) (2.14)
Renaming indices gives
1 . 1
Tap = g CaBy Qy - ) (HaryQpy — HpyQary + HyaQyp — HypQra) (2.15)

Since both H,g and @), are symmetric, this simplifies to

I
04p = —5 €apy by = HanQgy + HgyQar: (2.16)

2.5 Energy conservation in nematic fluids
2.5.1 Total energy balance

The total energy density e from section 1.4.1 now additionally includes the total internal rotational
energy density.
VaVa Q.0

5 +1 5 + pu. (2.17)

pe =

Therefore the total integral energy balance is

d Vo Uy QaQa
T Vd3x [p( 5 +u) +1 5 ]:/dSvaa,yva:/Vd‘gX&yaawva, (2.18)

where we have used the divergence theorem. This must be true for all arbitrary volumes V', so we
arrive at the expression for conservation of energy.

d7u+8dvava deaQa
Pat T @t T2

= 08003Vas (2.19)

where we have again taken the material derivative under the integral sign.

2.5.2 [Expression for internal energy

We know from section 1.4.2 that

p dvava

2 dt

= V008003- (2.20)
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Therefore,

du

P = —IQQ% + 000500, (2.21)

where we have used 0,303V0 = 03003Va — Va030a3. Now, multiplication of the conservation of angular
momentum equation (2.12) by €, gives

IQaQa = €08, 205 — Qq (EOW(;Qgﬁ + GaﬁgQ.yg) H.g. (2.22)

Therefore, we have

du
1Y E = Uaﬁaﬁva - eaﬁ'ygao"yﬂ + Q4 (€a'y5Q§,B + 6aﬁ5Q75) H’yﬁ' (223)

2.6 Nematic entropy production rate

We again proceed to write the entropy balance in the form of (1.28) in order to identify the entropy
production rate o.

2.6.1 Nematic distortion internal energy

The total free energy density, pf, is given by performing a Legendre transform on the T and ps
conjugate variables. For a nematic fluid, in contrast to an isotropic fluid, there are contributions to
the free energy coming from energetics associated with the director. We will call this free energy the
distortion free energy density, pfq. The corresponding distortion internal energy is pug. By writing the
total differentials of the free energy and internal energy.

d(pf) = —psdT + Y _ pidn; + dpfq (2.24)

d(pu) = d(ps) + Z widn; + dpug (2.25)

(2

Since pf and pu are related by Legendre transform of the T" and ps conjugate pair, dpug = dpfy, from
which it follows that dug = dfy.

We write the distortion free energy as a function Q.3 and 0,Q.s and expand to first order in Q.
and its gradient.

dfd =dug = qbag ang + Ta By d@ang, (2.26)
where have have defined
0fq Ofa
0B = and oy = ——— . 2.27
¢ B 8Qaﬁ By a<8'yQaﬁ) ( )

Given the prescribed functional dependence of f; on Q.5 and 9,Q.s, we may write the molecular
field as the functional derivative of fq with respect to Qqg.

0fa

H ;= —
T 5Qas

= —gbag + 8771'0{57. (2.28)
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2.6.2 Nematic Gibbs relation

The Gibbs relation follows from (2.25)

dps dpu  dug dn;
p=2 S TN S 2.2
dt dt dt ; dt (2.29)
Using (2.26), this is
dps dpu anB dnl
ar Qbozﬂ TaBy 7, dt 'yQaB Z ,Uz (230)
To put this in a more convenient form, we note that
d
! (04Qap) = (0 + v505)0yQap = 0v01Qap + v50(05Qas)
_ _ 4 Qap
= 0,0:Qap + 0yvs05Qap — (35@015)371)5 =0, T (85@045)({%1)5. (2.31)
Thus,
dps dpu .
E = ¢o¢,8 Qaﬁ TaBy (a'y Qaﬁ (aéQa,B 8 Ué) Z i M. (2-32)

2.6.3 Identifying 0 and js, for a nematic fluid

Substitution of the expression for the time rate of change of the internal energy (2.23) into the nematic
Gibbs relation (2.32) and application of simplifications of section 1.5.2 yield

ds ji,a
Tp pri {—8a (— Zui -y ) + |00 + (—pu +Tps+ me) 504 aﬁva}

7 7

— €apy Q008 + Qo (€ar6Q5p + €apsQys) Hyp — GapQap — Tapy (anaﬁ - (8562@5)87@5)

- {Z (i;a Oarfti + i Z%ﬁk) } : (2.33)
i K

(2
where the terms in braces appear for an isotropic fluid. We now apply the chain rule to rewrite
Tapy0yQas = OyTapyQap — QapdyTapy- (2.34)

Using this relation and relabeling some indices, we get

ds Ji i
Tra at <_ Z Hi 7;7 + WaﬁWQaﬁ) + (0ag + Poag + Ty5800Q~s) Opva
: %
K3

— €apy Q0048 + Qo (€ay5Q58 + €aps@rs) Hyp + [04Tapy — GaplQap
- Z (‘]7;; Oatti + [ Zk: Vkﬂ’k) , (2.35)
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where the bracketed expression is the molecular field H,3 and we have again identified

p=—pu+Tps+ Z i (2.36)
i
We can now identify
. Ji, .
T.]s,a = - ZMZ 7;7 + Waﬁanﬁ (237)
. (2
7

and
To= (Uaﬁ + péaﬁ + 777568@@76) aﬁva - eaﬁ'yroU'yﬁ + Q4 (ea'y(iQéﬁ + Ga,B(SQ'y&) H’yﬁ

+ HapQop — Z (ﬁ: Oafti + pi Z Vkﬂ’k) : (2.38)

7 k

2.6.4 Consolidating the material flux terms

We again consolidate the material flux terms as in section 1.5.3. We additionally simplify the terms
involving €2,,.

To = (Uaﬂ + péaﬁ + 777658&@75) aﬁva — Q4 (Eaﬁwavﬁ - (60475@56 + 6(166@76) H“/ﬂ)

+ HapQap — Y Jia Oalli = ) ek, (2.39)
i#0 k

where we have again defined the affinity Ay.

2.6.5 Reversible terms and the nematic Ericksen stress

We identify the portions of the stress and nematic ordering interactions that are reversible, i.e., those
that do not contribute to the production of entropy, as those for which o = 0, even when 08Va; Qa,
and Q. are all nonzero. The first identifies the Ericksen stress for a nematic liquid crystal.

Tap = ~POas — Ty5800Qqs, (2.40)

with the deviatoric stress again being O'gﬁ = 0ap — 0,3- Note that both terms in the Ericksen stress
are symmetric, and we can write it as

Tap = ~Plap — T5a03Qns; (2.41)
The second relation defining a reversible process comes from the €2, term.

604570%) = (€ar6Qsp + €apsQys) Hyp, (2.42)

which describes the antisymmetric part of the reversible stress. This can be re-written by multiplying
both sides by €., and contracting, using identities of the Levi-Citiva symbol.

1

= (Hy3Qra — HonQsr) - (2.43)

(r) _
Tap = 3
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2.6.6 Splitting the stress tensor

We split the tensors Ugﬁ and Jgv, into their trace, antisymmetric, and traceless and symmetric parts.

Note that Qag is traceless and symmetric and H,g is symmetric. Doing this gives the entropy produc-
tion rate

od,s o d
To =653lap — To§Wap + Taady0y/3 = Qa (€apy0y5 = (€arsQop + €apsQns) Hoyp)

+ HopQap — Y Jia Oufii — _ T Ar. (2.44)
20 %

2.6.7 Incorporating the antisymmetric part of the stress tensor

Because the Ericksen stress is symmetric, the antisymmetric part of the stress tensor appears exclusively
in the deviatoric stress, i.e.,

I .
d
Uag = 75 Capy Qy = HonyQpy + HpyQay- (2.45)
Therefore,
d,a o I Q
TOapWap T 5 Cafy tiyWap + (HayQpy — HpyQary)wap
I )
= 5 Capy Qywap + Hap(Qrpway + Qrawpsy), (2.46)

where we have relabeled indices and taken advantage of the symmetry of H,g and the antisymmetry
of wag. Defining the co-moving, co-rotational derivative of @,z as

DQaﬁ _ anﬁ
Dt — dt

+ Q’yﬁwa'y + Q'yawﬂ'ya (2'47)

we can write the entropy production rate as

od,s o I :
To = Ugguaﬁ + O-gaa’yv’y/?’ + 9 €aBy Q’ywaﬁ = Qq (eaﬂwgvﬂ - (Eoc”/éQ(S,B + 6&55@75) Hvﬁ)

5 DQ , _
+ Hap Dfﬁ - ;Ji,a Oafli — zk: T Ak (2.48)

Note that DQ,g/Dt is traceless and symmetric.

2.6.8 The axial vector (), as a second order antisymmetric tensor

An axial vector may be written as an antisymmetric second order tensor. We therefore define
Qag = €apyS2y. (2.49)

Using this fact and symmetry properties of second order tensors, the entropy production rate is, after
relabeling indices,

od,s o I.
To = Uig“aﬁ + aga&yvv/B + B Qapwap + [QLap(0ap — HypQra + Hay@py)]
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+H, DQ&B Z]W o fbi — ZrkAk. (2.50)
i#0

Since (2, is antisymmetric, as is the sum H,,Q gy — Hy3Q+o only the antisymmetric part of the stress
tensor may contribute to the entropy production rate in the bracketed term. Using the expression for
the antisymmetric part of the stress tensor (2.16), we get, for the bracketed term

Qap(0ap — HypQya + HoyQpy) = —1Q05005/2 (2.51)

Therefore, the entropy production rate is

I. . DQ

od,s o d B

To = O‘aﬁsua/j + aw&yvy/ii + 5 Qaﬁ(wag — Qaﬁ) + Ha/g Dta ; - j, o Oafli — E rpAg. (2.52)
i

2.7 Constitutive relations
2.7.1 Identification of fluxes and forces

Using our expression for the entropy production rate, we identify the thermodynamic fluxes and forces,
identifying the molecular field as a force.

flux force character
aff,y /3 04y scalar
Tk — Ay scalar (Vk)
Jia — O i polar vector (Vi # 0)
od,s ° .
T3 Uag symmetric, traceless tensor
DQ.p/Dt }OIag symmetric, traceless tensor
I Qaﬁ /2 Wap — Qap antisymmetric tensor

2.7.2 Expansion of fluxes

We carry out the expansions of the fluxes to linear order in the forces. With nematic order, the tensors
are still invariant to parity inversion. This means, again, that all tensors of odd order are zero. Using
this fact, the most general expansion is

0l /3 =L" 0y — > L' Ay + Litiap + Lob Hop + L% (Was — Qap)- (2.53)
k
rg = L' 0y0y — > L™ Aj + Liiag + L Hog + L1k (wap — Qap). Vk (2.54)
J
Jia=—Y LI 8sm; vi#0 (2.55)
J#0
od s — L3%0,0, — ZLWAk + L stiys + LQMSH s+ Ljffgw(ww — Q). (2.56)
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DQaﬁ

D = Lag0hvy — D LTE A+ LE giing + LI sHys + LG 5(wys — Q). (2.57)
k

I903/2 = LE0vy — > Lok Ay + L siins + Loy sHys + Lt (w5 — Q). (2.58)
k

I have called the expansion coefficients L and labeled the expansion coeflicients with a superscript to
designate what thermodynamic forces they couple. The code is given below.

superscript  thermodynamic force description of thermodynamic flux

v Oyv, compressive stress

Tk —Ay rate of chemical reaction k
fi —Oafli diffusive flux of species i
s Uag shear stress

q ﬁag order parameter alignment
a Wag — Qag rotational stress

The subscripts of the expansion coefficients L indicate their tensorial order.

2.7.3 Rotational invariance: application of the Curie principle

The system must have the same symmetry properties as the order parameter. In general the expan-
sion coefficients (the Ls), are functions of the intensive thermodynamic variables, including the order
parameter ()ng. Therefore, the zeroth order L tensors may be written as expansions of (,g,

L="Ly+ LQQaﬁQaﬁ + ..., (2.59)

where the first order term vanishes because Qoo = 0. Similarly, the second order tensors may be
expanded as

Log = L05a[3 + LlQa[g + LQQOWQ»W +..., (2.60)

where we have taken the zeroth order term to be that appearing in the absense of nematic order.
Likewise for fourth order tensors,

1 1 Lt
Logys = Ly <2(5a5557 + 50(75/35) -3 504,3575) + 70(50455/37 — 5047555) + Lgéaﬁé’yé
+ L8Qp50ar + L3Qs00s + LS Qandss + LiQus0sy + L5Qr50as + L] Qupdys
LoQasQns + - (2.61)

There are six terms that are first order in Q,3, since Q3 and 6,3 are symmetric. If they were not,
there would be 24 terms, e.g., Qugdys = Qusdsy = QBadys = QBadsy-

Going forward, we will only consider terms up to first order in )5 and use the above relations for
the expansion coefficients, (the Ls).

Compressive stress. We now consider the constitutive relation for the compressive stress, 0%. Using
the above relations,

5 = Ly%0ap + L Qag, L% = Li%00s + L"Qap, and L% = L0ap + L1 Qup. (2.62)
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Therefore, we have
Lob(wap — Qap) = 0, (2.63)

due to the symmetry (to first order in the order parameter) of L and the antisymmetry of wag and

Q. Due to the tracelessness of .5 and ﬁaﬁ,

Loztas = L Qapliag, (2.64)
LV%Hap = L"QugHog. (2.65)
Thus, we have
Og,y/?) = L""0,vy — Z L% Ay, + L Qoapliag + quQagﬁag. (2.66)
k

Chemical reaction rates. We now consider the constitutive relations for the chemical reaction rates.
As scalar quantities, their constitutive relations are similar to the compressive stress.

e = L0050, — > L' Aj + L™ Qupiias + L™ Qs Hag k. (2.67)
J

Chemical fluxes. The chemical fluxes, to first order in Qg are

[ (Lgiffaagj + L{iijaﬁaﬂgj) . (2.68)
J#0

Shear stress. We now consider the shear stress to first order in Q3. Recall

.d, o :
G = Lap0yvy — Z L35 A + Ly stins + L sHoys + L s(was — Q). (2.69)
k

We first consider
Lg}’ﬁc%fu7 = (Ly"0ap + Li'Qap) Oyv,. (2.70)

Because &ig is traceless, L{” = 0. Similar arguments hold for L‘ZZv Aj. Next, consider

ss,b

o S8s,a 1 1 Ss,C o
L&ystins = (Lo ’ <2(5o¢65ﬂ7 +0ay0ps) — 5 5&65*/6> + =5 (0asdsy = daylps) + L5™ 5a55w> Uy

+ (Lis*“QméM + L7 Qpy00s + L7 Qardps + L7 Qasdpy + L1 Qrs0ap + LTS’anﬂ%é) Uys. (2.71)

By the same arguments as in section 1.6.6, the first term is L)”“5. We now consider the remaining
terms.

Lis’ang(sa,Y’&,yg = Lis’aQﬁgﬁa(; = Li&aQﬂ'y'&’ya (2.72)
L*°Qg0astiys = L3 Qg e (2.73)
L5 Qor035Tya = L™ Qarling (2.74)
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L3 Qasdritrs = L3 Qastips = L3 Qayiing (2.75)
L3 Quabagiing = L3 (Qysting)das (2.76)
L3 Qupbysiigs = L3™ Qagiisy = 0. (2.77)
Therefore, we have
i = L8 i + (B + 137%) Qo + (137 4 L) Quoing + I3 @y (279

In order for &9 o to be traceless and symmetric, L7 = L0 = [3%¢ = 3% = [35/4, and L5 =
—L$° /3. Therefore,

. . 1 . . 1 .
L;Sﬁ,yéu,y(g = Lgsuaﬁ + L7° (Q(Qﬁ’yu’m + Qmuvg) — 3(Q75u57)(5a5> . (2.79)
Similar arguments apply for the LZ% N 5ﬁ75 term.
. o 1 o o 1 o
Lfystine = Lo Hap + Ly (2(Q57Hva + QarHyp) = 3(Q75H67)5a6> : (2.80)

For the L% o (Wap — Qap) term, the first term vanishes, again by the same arguments as in section
1.6.6. Defining A% 0 = Wag — 1, for notational convenience, he latter terms linear in the order
parameter are

L1 Qpsdar Afs = L1 QpsAds = L1 Qpy A%, (2:81)
L Qs A5 = L1 Qun A (252
Lia’CQa'y(sﬂJA?ya — Lia’CQOA'VA'C;ﬁ (283)
L3 QasbpyASs = L1 Qas Al = L1""Qar Al (2.84)
L1 Qys0apAfs = LT (Q04%5)00p = 0 (2.85)
L1 QaptrsASs = LI Quadfs = 0. (250)
Thus, we have
s ASs = (L5 + Li™) @y AT + (L5 + L1 Qur Al (2.87)

In order for 6,5 to be symmetric (tracelessness is automatically satisfied), Li"" = Lsab = —Li" =

—Li" 4 = L5 /4. Therefore, we have, to first order in Qqg,

. 1 . . 1 .
5 = Qusdy, — 3L Qs+ Lo + L (5@ + Quis) — 3(@usion)0us )
k

sq 17 s 1 & . 1 .
+ Ly Hop + LY’ <2(QB~/HW + QayHyp) — 3(QW5H67)5Q5>
+ L™ (me (wvﬁ ) Qﬁv (W'ya - an)) . (2.88)
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Order parameter alignment. The analysis for order parameter alignment proceeds exactly as for
the shear stress.

DQa,B
Dt

. 1 . . 1 .
= quQaﬁa,nyfy - Z LquQaﬁAk + Lgsuaﬁ + L%S (2(Qﬁ,yu,ya —|— Qa,yu,yﬂ) — 3(Qr\/5u5/\/)5a6>
k

o 1 o o 1 o
+ quHaB + L?q <2(Qﬂ7sz + QOWHVB) - 3(Q75H57)5a6>
+ LY (Qary(wyg — Q) — Qpy(Wya — Dya)) - (2.89)

Rotational stress. The rate of change rotational stress is an antisymmetric tensor. Recall,

IQ05/2 = L300y — > Lagk Ap + Ly siins + Loy sHos + Lis(wys — Qps). (2.90)
k

Since Li = L§"dap + L1’ Qap is a symmetric tensor, Li30,v, = 0. A similar argument holds for L‘Zfﬁ’“
We now consider

as,b

o as,a 1 1 as,c o
L2 yiys = (LO ’ (2(6@6[37 +0ay085) — 3 6&56’75> + =5 (Gasdgy = Gandps) + L™ 5a/3575> Uys

+ (L‘fs’aQﬁgém + L2Qp 005 + LI Qunbs + Lo Qus0py + LI"Qy500p + Li*7 Qaﬁaw) Gy, (2.91)

By the same arguments of section 1.6.6, the term that is zero order in (),g vanishes. Using the results
from our analysis of the shear stress, we have

Lg%véﬁ“ﬂ? = (Ltllm + Ltlw’b) Qpylya + (L(fs7c + L(ll&d) Qayliyg + L(ll&e(Q“@ﬁwé)(Saﬁ (2.92)

In order for this to equal an antisymmetric tensor, L]"" = LClLs’b = —L{% = —L(fs’d = —L{%/4, and
L{®° = 0. Thus, we have

. Ly . .
Lgsﬁ'yéu’ws = 71(Q,B'yufya - Qa’yu'yﬁ)- (2.93)
Similarly,
. L{* . .
38675];"’75 = T(Qﬂ'yH’ya - Qa'yH'yB)- (294)
Finally,
La 54T = (L8774 L3™) @y A%, + (L8 + L17) Quy Als + 157 (Q1sA%5)00s.  (2.95)

For this to equal an antisymmetric tensor, L{"" = L‘lm’b = L{" = L‘lm’d = L{"/4. Note that Q,sA%; =
0. Therefore, we have

as aq

. L . . L o o
IQa,B/2 = 71(6257“704 - Qa'yu’yﬁ) + 71(Qﬁ'yH'ya - Qa’yH’yB)

Laa
+ 71 (Qpy(Wya — Qya) + Qay(wys — 2yp)) - (2.96)
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Updated consitutive relations. The updated constitutive relations are

ol /3 =L"0y 0y, — Y LY Ay + L Qapliag + L""QapHap (2.97)
k
e =L"0y0y — Y LA 4+ L' Qugliag + L QasHag Yk (2.98)
J
Jio = = (L3P 0uits + L1 Qupdapy) vi (2.99)
J#0

. . 1 . . 1 .
655 =L Qaplyvy = Y L Qap i + Liliap + LY’ (Q(Qﬁvum + Qaryligp) — 3(Qv6“5'y)5ab’>
k

o 1 o o 1 o
+ L(s]qHaﬁ + Liq (Q(QB'VH'ya + Qa'yH'yﬁ) - 3(Q76H6'y)5a,3>

+ L™ (Qa’y(w'y,@ - Q'yﬂ) - Q,B'y(w'ya - an)) (2.100)
DQQ v r S o S 1 o o 1 o
0 =L Qualyty — Y L7 Qus i+ Lt + L (5@ + Qi) — 3(@ssion)0ns )
k
qq 7] qq 1 ) & 1 ©
+ LO Haﬁ + Ll §(Q5’YH70¢ + QavHvB) - g(Q’ytsHﬁ’y)éaﬁ
+ LI (Qar (wyp — Qyp) — Qpy(Wya — Dya)) (2.101)
- LCILS o o Lilq °. ©.
IQap/2 = T(Qﬁvuw — Qarliyg) + T(Qﬂvﬂva — QarH,p)
L
+ 9 (Qﬁv(wwa - Qva) + ch(w'yﬁ - Q’yﬁ)) . (2.102)

2.7.4 Omnsager relations

The Onsager relations stipulate

LUk = — L% ik (2.103)
LU = L™ (2.104)
LU = — L (2.105)

L8 = — L% (2.106)

L™ = L9 (2.107)

L = L, (2.108)
L= —L¥ (2.109)
L= —L% (2.110)
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L% = L%, (2.111)
Furthermore,

LV >0Vje {v, 1L, fi,s,q,a}. (2.112)

2.7.5 Simplification of constitutive relations: neglect of internal inertia and (),3-dependence
of viscosity

We now make a few simplifying assumptions. First, we neglect the internal rotation, as described in
section 2.4.2. This means that all terms involving w,g — €43 are ignored. Secondly, we assume that
the viscosities are independent of the order parameter (as suggested by Olmsted and Goldbart, PRA,
1990). This means that all fourth order tensors are expanded only to zeroth order in Q,s. Finally, we
now make the following definitions.

m =LY, n=L§/2,061 = —L, B =1/L{. (2.113)

We then get the following constitutive relations, also applying the Onsager relations.

0l /3 = muOyvy + Y LA, (2.114)
k
e = L0050, — > L™ A; + L™ Qupliap + L™ Qs Hag Yk (2.115)
j
jia=—-%" (Lgifjaaﬂj n L{iijaﬁaﬂﬂj) Vi (2.116)
J#0
G5 = D L™ Qag Ay + 2pias — PrHag (2.117)
k
DQ . e
D?/B — LquQaBAk + ,Bluaﬂ + 62 1Haﬁ- (2118)

2.7.6 Further simplification of constitutive relations: neglect of anisotropic diffusion

We should treat the diffusion as anisotropic, with non-vanishing L{if 7. We defer this until later, and
for now assume diffusion is isotropic. We can again define a diffusivity tensor and write

Jia = =My ZDijaanj- (2.119)
70

2.8 Nematic dynamical equations

The dynamical equations are given by

dni

T —1;0aVa + Oy Z D;j Oanj + Z ViiTk (2.120)
Jj#0 k
dv
pd—ta = 03045 (2.121)
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DQaﬁ
Dt
where the latter is simply a constitutive relation.

= L™Qup Ak + Briiag + By  Hap, (2.122)

2.8.1 The total stress tensor

The total stress tensor is
. 1
Oap = Jgﬁ +0a5 = O‘gg + 50%5065 + O‘gg} + 0ap- (2.123)

We use the above constitutive relations for &gg and JE}W (2.16) for aig, and (2.41) for the og.
Therefore, the total stress tensor is

OaB = 2N0ag + 1y0Vy00s
— B1Hap

+ ZersQaﬁAk + ZervAk(Sa,B
k k

- CV’YQ/B’Y + Hﬁva

- p(soz,é’ - 7776048,8@76- (2124)

The first line is the isotropic deviatoric stress, the second is the stress due to alignment with the
molecular field, the third is the active stress (due to chemical reactions), the fourth is the antisymmetric
part of the deviatoric stress, and the last line is the reversible (Ericksen) stress.

2.8.2 Simplification of the total stress: neglect of second order terms in H,g and Q.3

The total stress tensor is further simplified if we neglect terms that are above first order in the molecular
field and order parameter. In this case, the stress tensor is symmetric.

Tap = 20itap + MOyvy0ap — BiHas + > L™ QupAr + Y L' Apdas — pdags. (2.125)
k k

2.8.3 Further simplification of the total stress: equality of viscosities
We make a further approximation that 7, = n. Then, we have

as = 2Ntiap — BilHas + > L™ QupAr + Y L™ Aydas — pag, (2.126)
k k

where uqg = (0avg + 08v4)/2 is the symmetric part of the velocity gradient tensor.

2.8.4 Special case: fast ATP consumption, mass action kinetics, incompressible fluid,
diagonal diffusivity tensor

We now consider the special case where ATP is in abundance and diffuses infinitely quickly. In this
case, the affinity for the hydrolysis of ATP,

ATP — ADP + P, (2.127)
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which we will call reaction 0, is

Ao = papp + ppi — paTP = Ap, (2.128)

which is constant. We define L™ = ¢, L"™" = (, and L™ = \. We assume that no other chemical
reactions contribute to the stress of alignment of the order parameter, or L'** = L™% = (0 Vk # 0.
Thus, the stress tensor is

TaB = 2NUap — ,Blﬁocﬂ + CAMQO(B + (QTAN - p)éaﬁ' (2.129)
The order parameter is governed by

DQaB
Dt

= Bitiap + B3 'Hap + AAUQag. (2.130)

If we further assume that the chemical reaction rates (with the exception of ATP hydrolysis), are
governed by mass action kinetics, i.e.,

e & 11 kpim; ¥ (2.131)

i for which v; <0

This means that the terms containing to the chemical affinities in the constitutive relation for 7y
dominate the other terms in the sum. Further, is we assume the diffusivity tensor is diagonal, we have

dni
dt

= —ni0ava + Didalani + > Vki 11 ki k. (2.132)

k 4 for which vy; <0

If we further assume that the fluid is incompressible (0yv, = 0 and uqg = Uag), We get

OaB = 277“01,6’ - Blﬁaﬂ - CA:U’Qaﬁ _péaﬁ (2133)
DO, .
gt B — Bruag + 5B, lHaﬁ + AApQap. (2.134)

The (Ap term vanished because if appears as an expansion of the diagonal portion of the deviatoric
stress, which is zero for an incompressible fluid. We can write the stress in terms of DQ.g/Dt by
eliminating the molecular field.

DQaﬁ

0ap = (200 + B12) Uap — POap + (' AuQap — 152 Dt

(2.135)

where (' = ( + S182).

2.8.5 The Landau-de Gennes expansion
We can write the distortion energy as a Landau-de Gennes expansion. Formally, we may write the

distortion energy as a function of the order parameter, Q,3. The coefficients of the expansion are in
general tensorial, so most generally,

fd = Aa,@’yé@aﬁ@'ﬂs + Baﬁ'ﬂm/@aﬁ@'ﬁ@'ﬁ@;ﬂ/ +.. (2136)
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where we have not included the dependence of the distortion free energy on the derivatives of the order
parameter. Considering symmetry properties of a uniaxial nematic (which I will not go into here), the
Landau-de Gennes expansion to second order in the order parameter and its derivative is

L L
fi = 5QasQas + 5-(0:Qa8)(D:Qas) + = (92Qur) (95Q15)- (2.137)

The first order terms are all zero, because of the scalar nature of f;. It can be shown that to second
order in S (see Vertogen and de Jeu, page 232), that L; and Lo are related to the Frank elastic
constants, K1, K, and K3, by

Ky = K3 =2(L; + Ly/2) 5? (2.138)
Koy =2L15%, (2.139)

where truncation of the Landau-de Gennes expansion necessitates that K7 = K3 (inclusion of further
terms would result in K; # K3). If we make the one constant approximation that K1 = Ky = K3,
then Lo = 0, and we define L = L. Therefore, we have a distortion energy of

L
fi =5 QupQup + 5 (0 Qa)(0,Qup): (2.140)

2.8.6 The molecular field as determined by the Landau-de Gennes expansion

We can use the distortion energy to compute the molecular field.

0fa

Hop == Qi+ 10,0,0us 214
6Qo¢ﬁ
With this in place, we can get an expression for DQqs/Dt.
DQ _
i = Pitias = " (X Qas — L0,0,Quas) . (2.142)

where Y’ = x — f2AApu. Keep in mind that with this definition, terms containing x’ result from both
active and passive processes.

Substitution of (2.142) into (2.135) yields

T = 2Uas — POas + (' Ap+ Bi1X — B1L040y) Qugs. (2.143)

2.9 A thin sheet of active nematic liquid crystal

We now consider a thin sheet of active nematic liquid crystal. We stipulate the the filaments are aligned
in the xy-plane, meaning Q.. = Q. = 0 and )., = —1/3. We define the equilibrium state of the liquid
crystal to be disordered in the plane, naturally absent of flow and active processes. The equilibrium
order parameter is then given by

1

1

with the other entries being zero. We define @/, 5 as the deviation from the equilibrium configuration,
Qap = Qg+ Qp. (2.145)
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@, is uniquely defined by Q;, = —Q;, = Q and Q% = Qyz = ¢, with all other entries being zero.

In addition the thinness of the sheet affects the scale of the fluid velocities in the respective direc-
tions. The sheet is thin in the z direction, say with thickness h, compared to the x and y directions,
say with extent ¢. If characteristic velocity in the x and y directions is U, then the continuity equation,
0,v = 0, specifies that the characteristic velocity in the z-direction, U, is

U, ~ %U. (2.146)

Le., U, < U since h < /.
2.9.1 The Landau-de Gennes expansion under the thin sheet constraint

Given the thin sheet constraint and that the equilibrium value of the order parameter is Qgﬂ, the
Landau-de Gennes expansion of the distortion free energy is

X L
fa= 5@;,3@;5 + 5(@@&5)(@@&5)- (2.147)
The resulting molecular field is
0 fa
H,s = ~50 - ; = —XxQ4s + L0,0,Q.,5. (2.148)

2.9.2 Expression for DQ,s3/Dt under thin sheet constraint

Using the expression for the molecular field in the thin sheet,

DQuz D éez _
- 51u$x B 62_1 (X/ - La’Ya’Y) Q;:x + )‘AMng (2149)

and similarly,

DQyy _ DQi,

= Bruyy — /351 (XQg/y - LaVa“/Q;y) + )‘A/‘(ng + nyy)

Dt Dt
= Prugy + By ' (X' — L8y0,) Qe — AARQS,, (2.150)
where we have used the fact that @/, = —Q;y. Subtracting the two equations gives
DQ,, DRy, _, DQ 1 -
Dt Dtyy =2 Dt B1(taz — uyy) — 285" (X' — Ly0,) Q. (2.151)
Thus, we have
DQ 8 B s
?Cf = é(uw — Uyy) — By ! (X, - L(@g + 85)) Q. (2.152)

Finally, we can trivially compute

DQ,, Dq _
Dty =5, = Brtey — By (X' — L(02 + 7)) q- (2.153)
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Note that

DO ~ -

?Cf = 0,Q + v,0,Q + q(Ozvy — Oyvy) (2.154)
Dq ~

D = 01q + vy0vq — Q(0pvy — Oyvy). (2.155)

2.9.3 The stress tensor for a thin film

The stress tensor for the thin film is

DQa
Oas = 2uas = Pag + CAu(Qls + Qup) + | BT Batias — Bife —5 (2.156)
We now compute the bracketed term. Note that
DQCEZ DQZI DQ’yZ Dsz DQZZ
prm— pr— prm— =y = . 2.1
Dt Dt Dt Dt Dt 0 (2.157)
Therefore, for the bracketed term,
D .
B2 Batias — P12 ggﬁ = B2Bougp if aor B =2 (2.158)
Considering now the other three independent terms,
Dwa /825 2
BEBattae = P1fsr =5 = = (e + uyy) + 1 (X = L0+ 0)) Q (2.159)
DQ 85 ~
B Bauyy — b1 T 12 2 (U +uyy) + B1 (X — L(O2+02)) Q (2.160)
7 DGy _ g (v — L(0? + 02 2.161
b1 B2ty — 152 Dr =0 (X' —L(9; +8)) q. (2.161)
Therefore, the bracketed term is
5%52“046 aor =z
B2 Btiag — Prfp 2228 _ | B / 21 92)) (2.162)
1 ZUOZB 1P2 Dt - 2 (uxac+uyy)+61 (X —L(8x+3y))Q O[:,B#Z . .
ﬁl(X/_L(ag+a§))q O‘#ﬁv 057/87&2
This can be written in a more compact form,
D@, Upy + U
5%&2“&6 - BlﬁQ gt & = 6%52“@&(50@ + 5ﬂz - 501,266;;) + % (504:1:5530 =+ 5ay5,3y)
+ 81 (X = L(9F + 07)) Qg (2.163)
Defining wap = B%ﬁguag(csaz + 082 — 0a2082) + (Uzz + Uyy) (0az08z + daydsy) /2, the stress tensor is
Tap = 2Uap — POap + C'AuQos + (CAL+ Bix — BLL(D2 + 0))) Qi + B fawag- (2.164)

As pointed out by Salbreux, et al., the wqg term represents anisotropy of the viscosity (arising because
we constrained the order parameter for alignment in the zy-plane), which we already specifically
neglected in section 2.7.5, so the w,g term, may also be neglected.
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For reference, we now write all the components of the stress tensor.

Oaw = 20050z — p + (CAp+ B1BAAL) QY + (CAp+ Bix — B1L(D; + 8;)) Q (2.165)
Oay = Oye = N(Oavy + Oyvz) + (CAp+ rx — B1L(DZ + 0})) q (2.166)
Opz = Ozg = 1(0xvz + 02z) (2.167)
Tyy = 200yvy — p + (CAp+ B1BAAR)QY, — (CAp+ Bix — ALL(02 + 02)) Q (2.168)
Oyz = Oy = 1(0yvz + 0,vy) (2.169)
0z = 200, — p+ (CAp + B1BAAL)QY., (2.170)

where, as noted before, Q0, = 2y =1/6 and @}, = —1/3.

2.9.4 Equations of motion

Given the expression for the stress tensor, we can write the equations of motion. We assume that all
phenomenological coefficients that are not active are constants. This includes n, 81, B2, X, and L.

dv, ~ ~
Pt = 03ay =1 (02 + 02+ 62) va — Oup + B (9:Q + 0ya) — AL (02 + 0:02)Q + (920, + )
+ QUu0uCAM + By (CARQ) + 0, (CAug) + B1 Q00N (2.171)

dv ~ -
pg) = 080ys =1 (0% + 8 + 02) vy — Oyp + Pix (dcq - 3yQ) — L ((33 +0:0,)q — (9:0y + ‘95)@)

+Qy, 0y CAp + 95(CAuq) — 8,(CANQ) + B152QY, A A, (2.172)

where we have used incompressibility, dyv, = 0. The second line of the two equations represent the
active terms.

If we do not have rigid plates on either side of the thin sheet, we assume that the stress normal to
the sheet vanishes, or o,, = 0. If this is the case, the pressure is set by

p = =20(0svz + Byvy) + (CAB+ L1822 Ap) Q2. (2.173)

The equations of motion then become

p% =1 (07 + 0 + 02) v + 200 (v + Dyvy)

+ 81x (9:Q + 9,0) = B1L (02 + 0.0)Q + (820, + 5})q)

+(Q — Q2)0:CAN+ 0(CARQ) + 3y (CAng) + B152(QF, — QL) 0N Ap (2.174)
PS8 = (02 4+ 05 4 02) vy + 200, (O + D)

+ 61X (000 — 0,Q) — 1L (03 + 0.02)q — (920, + 9)Q)
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As suggested by Guillaume, we can use the definition of the stress tensor and the continuity equation
to re-write the first two terms (2.174) and (2.175). We note that

77831)35 = 0,04, — 10;0,V; = 0,04, + N0z (0105 + Oyvy), (2.176)
by the expression we derived for the stress tensor and continuity. Similarly,
nafvy = 0,04y — 10,0V, = 0,0y; + N0y (0vy + Oyvy). (2.177)

Substitution of these two equations into (2.174) and (2.175) gives, after rearranging,

dv,
pﬁ = 0,04, + 77(65 + 85)’”1 + 377895(896036 + ayvy)
+ 5 (00 + 0y0) — AL (03 + 0,02)Q + (920, + 53
+(QY — Q%)0:CAR+ 0:(CARQ) + 0, (CAnq) + B182(QY, — Q)0 Ap (2.178)
dvy 2 2
P = 02042 + (0, + 0;)vy + 300y (002 + Oyvy)

+ 81 (9eg - 0,Q) = BIL (02 + 0,02) — (20, + 53)Q)

+ (@), — QL)0yCAL + 0.(CApg) — 9y (CARQ) + 1B2(Qy, — QL)IyAAL. (2.179)

2.9.5 Averaging over the z-dimension

To get a two-dimensional description of the active nematic fluid, we must average over the z-dimension.
In general, for a quantity a, the average over the thin dimension of the film (z, with thickness h), is

1 h
a= / dz a. (2.180)
h 0

Note that

1 [k 1 h 1 [k 1 [
(%a:h/o dz@xa:hax/o dza — adyzh = 0, (h/o dza)—(@xh) (a—f—h2/0 dza). (2.181)

If O,h ~ 0, then d,a ~ Oa. Similar results hold for @, %, %, and 0,0ya. Note that, in general
ab # ab, unless 0,a = 0 or 9,b = 0. In addition to the constant coefficients, we also assume that p, n;,
and @Q,g do not change appreciably over z.

We can now perform the average over the equations of motion, (2.178) and (2.179), using the above
relations and assumptions, further assuming that the thickness is approximately constant in space.
The only integrals that arise that we have not yet addressed are of the form

1 [h w=lg
h/o d204, = Jho. (2.182)

Therefore, the integral is proportional to a shear stress at the surface of the fluid. This could be a
stress against, e.g., a cell membrane or cytoplasm. The stress can depend only on local parameters, and
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cannot depend on the order parameter, as can be seen for the expression we derived for o,,. The stress
is not normal, so it cannot depend on the pressure. This leaves only the average velocity. Therefore,
we take

1 [h Oz | _
E ) dzoy, = h = =Yg, (2183)

where v is a friction coefficient capturing the proportionality between the surface shear stress and the
velocity. A similar relation holds in the y direction.

Performing the averaging yields
P4, + P Dy iy = N(02 + )0, + 30D, (050, + ByB,) — Y0y + BrX (axQ + ayq)
= BiL (92 + 0:0)Q + (320, + 9})a) + (@2 — QL)0:CAn
+ 02 (CAUQ) + 0, (CAug) + B152(Q%, — Q%) A AL, (2.184)
pOfTy -+ pusDvy =1 (02 + 02) By + 300y (02, + Dy0,) — 0, + Bix (02 — 9,Q)
— AL (02 + 0,02)q — (920, + 9)Q) + (QY, — QL) ¢

+8:(CAng) — 0y(CARQ) + B12(Qyy — QL)IAAp, (2.185)

where ( is not to be confused with the previous use of that symbol representing the Onsager coefficient
L™". The nonlinear term on the left hand side presents a difficulty. Under circumstances where the
Reynolds number is low, this term may be ignored. We retain the time derivative term, which may
remain, even at small Reynolds number, if the Strouhal number is also small, i.e., if there is another
slow process (e.g., slow diffusion of chemical reaction) occurring in addition to fluid motion. Going
forward, we neglect the nonlinear term on the left hand side.

Averaging the equation describing the dynamics of the order parameter, again assuming 9,Q3 ~ 0,
yields

0Q = ~(0:0: + 5,0,)Q — (05, — D0 + 2 (D, — 0,7,
(X L2102 0 4 3Au0

0hq = — (0,05 + 0,0y)q + Q(Iy0y — Oy ) + %(c%ﬁy +9yvs)

- (gz - éz(ag + aj)) q+ MApugq. (2.187)

We note that in order to maintain a constant thickness, material must be brought into and out of the
thin layer. The rate at which material flows in and out may be found by averaging the incompressibility

condition, dyv, = 0.

0|0 = —h(Dp + ByDy). (2.188)
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The left hand side is interpreted as the fluid velocity of material flowing out of the thin layer in the z
direction.

Averaging the reaction-diffusion-advection equation for a chemical species, assuming 9,n; =~ 0 and
a diagonal diffusivity tensor, yields

oy |P
Oni = Dy(07 + 02)n; — O(nity) — Oy (nivy) + [—n“;;k’} + Z VkiTk- (2.189)
k

The term in brackets represents the flux of species ¢ out of the thin film. The expression for this term
is given by (2.188). We may, however, imagine a situation where fluid may be exchanged through the
boundaries of the thin film, but not diffusing species i. We introduce a parameter, «; € [0, 1] to allow
for this situation.® If a; < 1, the exit of species i from the boundaries of the thin film is inhibited.
Thus, we get

Oin; = Di(ai + 65)72z — (1 — a;)ni(0Ug + OyUy) — Up0xn; — UyOyn; + Z VkiTh- (2.190)
k

2.9.6 Summary of governing equations

In summary, the governing dynamical equations for a thin film of active viscous nematic fluid in which
species can diffuse, taking all the assumptions thus far mentioned are

pOrvy =102 + 02)0, + 0210u(Dyvs + Oyvy) + Bix (0.0 + 0ya) — AL (05 + 0,02)Q + (920, + 9)a)
+ (@ = Q22)0:CAR + 0u(CANQ) + 0, (CANG) + $12(Qp — Q2)DAA = Y0, (2.191)

pOruy = 1 (92 + 02) vy + 1210, (Dave + 0y0,) + Bix (02 — 9,Q) = BiL (83 + 0,020 — (920, + 93)Q)

+ (@), — QL)A,CAN + 0:(CAng) = 9, (CARQ) + B1(Q), — QLIINAL — v, (2.102)
0,Q = — (020, + Uyay)Q — q(0zvy — Oyvs) + %(8@“% — Oyvy)
L ~ ~
- <5X2 L@+ a§)> 0+ MG (2.193)

8tq = _('Umaz + Uyay)q + Q(azvy - 8yva:) + %(@cvy + 8@/@:13)

X L 2 >
— (2 - (@24 82) ) g+ AA 2.194
<ﬁ2 62( ) ) a g ( )
on; = Di((‘)g + 8;)71Z — (1 — a;)ni(0zvy + Oyvy) — V3051 — vyOyny; + Z VkiTk, (2.195)
k

where we have removed the overbars for notational convenience. We have defined 12? to be the two-
dimensional bulk viscosity, which we have derived to be n2¢ = 31. Note that, in general, any of the
coefficients may depend on the concentrations n;. Of particular interest are the active terms, (A and

AA .

5This is a simplistic way to do it, since the tacit assumption is that the concentration of regulator in the medium in
which it can exchange is the same as it is locally in x and y in the film. A more reasonable expression can be derived,
depending on the nature of the medium that the thin film can exchange material with.
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3 Sponanteous flow and nematic alignment

We now consider the possibility that a thin film of an active nematic fluid, initially isotropic and
without flow, can spontaneously align and flow. To do so, we consider the following simple case.

1) The Reynolds number is so small that the time derivatives in (2.191) and (2.192) may be neglected
(7XRe ~ 0, cf. section 4).

2) We treat the fluid as a single species.

3) There is a single regulator or active stress and active alignment, i.e., (Ap = (Au(n) and AAp =
AAp(n).

4) There are no other chemical reactions besides those generating active processes.

3.1 The quiescent, isotropic, homogeneous steady state

The isotropic, quiescent, homogeneous steady state has Q = ¢ = 0 and n = ng. Then, by (2.191) and
(2.192),

(02 + 02)vg + 12204 (02vz + Oyvy) = 0z (3.1)
(02 + 07 vy + 0220y (Dpve + Dyvy) = Fuy, (3.2)

so vy = v, = 0. Therefore, we also have 9,Q = 9y = 0 by (2.193) and (2.194), consistent with our
putative isotropic steady state. We consider a perturbation to this steady state,
Q _ 5Qest+ikzx+ikyy (33)
q= 5qest+ikmx+ikyy (34)
n = ng + onesttikartiky (3.5)

The steady state active stress is (Au(ng), and under the perturbation, the active stress, to first order
in the perturbation, is

CAp(n) = CAp(ng) 4 dnesTk=rikvy g Ap(ng) = CAu(ng) + n’ ,¢Au(ng), (3.6)
where we have defined
n' = fnesttikartikyy (3.7)

for notational convenience. Note that the derivatives are easily calculated, e.g.,

0xq = 1kyzq, Oiq = sq, etc. (3.8)

3.2 Velocity profiles

We insert the perturbations in Q, ¢, and n into (2.191) and (2.192) (using Q%, —Q2, = 0y —Q%, =1/2)

to get, to linear order in the perturbation,

i ((77(83 +02) = )vg + 0210, (Fpvs + 8yvy)> = Bix (k@ + kyq) + B1 L ((kfé + kak)Q + (K2ky + k‘f})Q)
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ky ~ kx
+ ? Cnn/ + erOQ + kyC()q + ? 51/32)\71”/ (39)

i (002 + 82) = 7)oy + 120, (Orve + Byvy) ) = Bix(hng = ky@) + BiL (063 + Kokl — (K2hy + K)Q)

k -~ k
+ 5 G+ kaCog = kyQQ + 5 BiBoAnr,  (3.10)
where we have used the fact that Q%, — QY. = 2y — @Y, =1/2. We have also defined
G0 = ¢Au(no); GCn = On(Au(no) (3.11)
Ao = AAu(ng), An = O AApu(ng) (3.12)

for notational convenience. The velocities are easily solved for by Fourier transform to give

(k% + ) 92 — 0 kaky gy

Vg = 3.13
1+ R+ ) (1 ) (313
o (kT + ) gy — mikokyge (3.14)
! ((n + 3k + ) (nk? +) '
where k = /k2 + k2 and
. 2 = kx / A 61/32
9z =1 | P (X + Lk )(k:rQ + kyQ) + ? Cam + CO(ka:Q + kyQ) kzAnn (3'15)
. 2 ky 5152
gy =i |Br(x + LK) (kaq — ky Q) + 5 nnt’ + Go(kaq — Ky Q) + kyAnn (3.16)
For convenience, we compute
d(0pvy — Oyvy) = id(kpvy — kyvy)
= =B o+ LR) [ (12 (0 +7) + 4n2PK2K2) @ — 2021(k2 — K2)hhya]
1 .
— 5 (k2 = KDk + )G’ — (K2 (0k? +7) + 42k2k2 ) GoQ
+ 2020k ky (K2 — k2)Coq — 51&2( — E2)(nk* + )\ (3.17)
d(0zvy + Oyvy) = id(kyvy + kyvy)
= By (x+ Ik?) 202 (K2 = K2k @ — (k2 (nk? +7) + 02062 - k2)%) d
= kaky (nk? + 7)Gan’ + 203 koky (K2 — k3)GoQ
—{#mﬁ+w+%ﬂﬁ—%Vﬁm—&@@@mﬁ+wa, (3.18)

d(Opvy + Oyvy) = id(kyvy + kyvy)
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- k2
= —B1 (x+ LK?) (nk? +7) (K2 = k2)Q + 2kokyg) — = (nk? +7)Gun

5152

R )60 (2 = R2)Q + 2hokya) — P22 K200k 4 ) art (3.19)

where
d= ((77 + ek + 7) (nk® +7), (3.20)

the denominator in the expressions for velocities.

3.2.1 Dispersion relation

We next substitute the velocity profiles into (2.193), (2.194) and (2.195). The first two terms of the
right hand sides of (2.193) and (2.194) then result in terms of order 8Q2, 8¢%, and 6Q3q. These are
second order in the perturbation, so we neglect them. Similarly, note that the v,0,n and v,0yn terms
in (2.195) are second order in the perturbation and therefore neglected. We get, then, to first order in
the perturbation,

sQ = 111Q + liaq + Lizn’ (3.21)

$q = 151Q + loaq + lan/ (3.22)

sn' = l31Q + l30q + l33n', (3.23)

with
by = —% (2 0k? 47) + 4029287 ) (B + LR) + o) — @ (x + LK?) + o, (3.24)
he=— =02k ke (K2 — K2) (Bu(x + LE?) + Go) | (3.25)
s =~ 582 = )R +9) (Gu + Bifada), (3.26)
lo1 = Lo, (3:27)
Loy = —% (K202 + ) + 22062 = k2)?) (B O+ LK) + Go) — @ (X + LE”) + o, (3.28)
Iy = 3 (1= a)no(nk? +7) (K — K2) (Bu(x + LK) + ) (3.30)
l32 = % (1= a)no(nk? + 7)kzky (B1(x + LK) + (o) (3.31)
201 —

— _Dk2? + k (1 2da)n0 (nk_2 +’Y)(Cn + /61B2)\n)‘ (332)

Therefore, s is given by the eigenvalues of the 3x3 matrix with entries /;; described above.
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To obtain the dispersion relation, we must compute these eigenvalues. There is an analytical
expression, but it is very complicated, consisting of the roots of a cubic polynomial, so it is of little
use. We are better off plotting the dispersion relation for given parameter values. Nonetheless, we note
that it is possible to have imaginary eigenvalues, so an oscillatory instability is possible.

3.3 Special cases

We will eventually look are dispersion relations for various parameter values. For now, we consider
some special cases that can be treated analytically.

3.3.1 Very weak coupling of nematic order

If the coupling to nematic order is very weak, i.e., 81 = A = 35 1 — 0, we essentially recover the situation
described in Bois, Jiilicher, and Grill (with an extra factor of 1/2 multiplying the active stress, a = 0,
and 1 — 1+ n2%). In this case, the dispersion relation is

(1 — a)nok?
2((n+n29)k2 + )

s =—Dk? + On CAp(ng). (3.33)

Note that if the active stress is expansive (Apu(ng) < 0, and the homogeneous steady state is unstable
regardless of the sign of 9, Au(ng) (i-e., regardless of whether we have an active stress up-regulator or
down-regulator). However, if we have a contractile active stress, the results are as described in Bois,
Julicher, and Grill.

3.3.2 Constant active terms

If (Ap and AAp are not functions of n, the dispersion relation simplifies to

B 2
S1 = _(77 + n3d1)k2 o k2 (Bl(X + Lk2) + (0) — @(X + L/{Q) + 20, (3.34)

Note that we have real eigenvalues, so we do not have an oscillatory instability. If we have a contractile
active stress ((p > 0), the first two terms are negative for all k. They reach a maximum (minimal
absolute value) when k = 0. Therefore, the onset of instability of the isotropic steady state is

_X
B’

Therefore, if A\g is sufficiently large, we can get an instability.

Ao (3.36)

However, we might expect Ag = 0 in the absense of crosslinking of the nematic filaments. In this
case, the only alignment is by flow. In the absense of crosslinking, one can imagine an active stress
imparted on the fluid as a result of motors carrying cargo along the filaments, as opposed to sliding
filaments relative to each other. Here, one could consider the cargoes as a set of Stokeslets. If a
Stokeslet has a force F, then the resultant pressure is

p=———73 +po, (3.37)



where z is the Cartesian distance from the Stokeslet and pg is the ambient pressure. Depending on
the system geometry, the resulting pressure can have either a positive or negative sign, so it is at least
possible in principle that {5 < 0. This is a delicate point that needs more thought, and might benefit
from treatment of a polar fluid as well.

3.3.3 Constant (Ap <0 with MAp =0

We now consider the case where (5 < 0 and Ay = 0. Given that one of the eigenvalues is positive, the
larger is so. Therefore, the pertinent dispersion relation is
ﬂl 2 2 2 2
s(k) = k — + Lk%)) — —(x + LEk*), 3.38
(k) PSR (16l = Br(x ) 5, X ) (3.38)
where we use the absolute value of (y, remembering that (p < 0. Note that for k =0, s = —2x/52 < 0,
so the zero mode is always stable, provided we have friction. The homogeneous steady state is unstable
if there is a k for which

2
ol > (81 5282 +) ) 0+ L) (3.39)
The fastest growning mode occurs when
Ors(k) =0 and 9%s(k) < 0. (3.40)
We have
os(k) =k | —— — LE*(nk” +~v) + + Lk —-—. 3.41
ks(h) = k[ (1G] — B (LR ) + 2+ L) - (.41

Clearly, s(k) has an extremum at k = 0. As shown before, s(0) < 0, and this extremum is a minimum
if |Co| is sufficiently large. We can solve dis(k) = 0 for k, use this value to find the value of |(p| for
which s(k) = 0 to determine the onset of instability. The resulting expression is enormous and not
particularly informative. We are better off generating stability diagrams.

3.3.4 Constant (Ap < 0 with AAp =0 with v =10

In the absense of friction (y = 0), things are simpler.

B 2

s(k) = = [I¢ol — B1(x + LK?*)] — —(x + Lk?), (3.42)
n B2

so s reaches a maximum at k = 0. Thus, in the absense of friction, the fastest growing mode of an

instability is the zero mode (global flow and alignment), which occurs if

2n
i3+ 28).

ol B1B2 (3.43)
In other words, the active stress must be strong enough to overcome the tendency for the filaments
to remain randomly aligned, as measured by the inverse susceptability x from the Landau-de Gennes
expansion.

Further, for a given x, a small viscosity can lead to an instability, while a large viscosity will not.
Therefore, if everything else is constant, the bifurcation between an isotropic quiescent state to an
ordered, flowing state may be crossed by moving the viscosity down.
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3.3.5 Consequences on studies of ooplasmic streaming

This is a proof of principle that regulation of viscosity can result in moving from an isotropic quiescent
state (pre-streaming) to an ordered, flowing state (streaming) in filamentous active fluids. Two things
are important to note. First, this analysis requires an expansive active stress, as opposed to a contractile
one. Typically, the active stresses are contractile in nature for crosslinked networks of filaments.
However,

It is important to note that this is a nematic fluid. In the oocyte, the active stresses are acted along
microtubules, which, in the geometry of the oocyte are polar, not nematic. An interesting experimental
observation is that the absense or presence of dynein can result in kinesin-driven streaming or not,
respectively. This cannot be captured with a nematic fluid, since the directionality of the motors is
not taken into account. In a polar fluid, the active stress couples to a polar order parameter, so two
fighting motors in opposite direction, result in lower active stress coupling to fluid flow. For a nematic
fluid, the directionality cannot be distinguished, since the flow couples to a nematic order parameter.
Finally, it is interesting to note that we did not have to take into account viscoelasticity in this theory.

4 Dimensionless equations

To make the governing equations (written in section 2.9.6) dimensionless, we need to define character-
istic length, time, and velocity scales as £, 7, and U, respectively. It is also useful to know the following
dimensions of the parameters.

81 [=] dimensionless (4.1)
By [=] % (=] viscosity (4.2)
X (2] oty [=] stress (43)
L= Sy [ force (4.4)
7=l L];?T = forzlj:irtl;ity (45)
My [=] T71 (4.6)
cap (=] 2L (=) stress (47)

4.1 Dimensionless parameters

This is a general specification, and the exact values of these depend on the particular geometry and
physical constraints of a given system. We define the characteristic length as ¢ and the characteristic
time scale as 7. The characteristic active stress is ((Ap)o and the characteristic active alignment is
(AMAp)o. We define the characteristic velocity of be U, and this is set by ((Apu)o, as we will show in a
moment. For now, we define dimensionless variables

T=ux/l (4.8)
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g=y/t (4.9)

Ty = 02U (4.10)
By = v, /U (4.11)
t=t/T (4.12)
CAp = CAR/(CAR) (4.13)
AL = ML/ (AAR)o. (4.14)

To determine the characteristic velocity, we rewrite the equation of motion in 1D, neglecting the
contribution of the order parameter and assuming a zero Reynolds number.

1 2
3 0xCAp = —n05vg + YUg (4.15)

N (CAEM)O

9:CAp = _%U (a,%@x + va> . (4.16)

To have both sides of the equations be of the same magnitude, the characteristic velocity is set by
U = ((Au)ol/n. If we consider an infinite domain, the only length scale present is /n/7v. This sets
the characteristic velocity as U = (CApu)o//77y. However, if we have no friction and v = 0, there is
no characteristc length scale. Indeed, on an infinite domain the equation of motion has no physical
solution in the absense of friction. For a finite system the length scale is set by the size of the system
itself. For example, if we consider (Ap = O(z), where ©(x) is the Heaviside step function, and we
consider v, (—0/2) = v,(¢/2) = 0, we get

A
UI:M 1f2@ . (4.17)
8n l
So, generally speaking, the characteristic velocity is given by
Ap)ol
U= (C:)O (4.18)

For convenience, we define two length scales, the hydrodynamic length scale and the nematic cor-
relation length, defined respectively by

lp =+/n/v and ¢, = \/L/x. (4.19)

Using these definitions, the governing equations become

% Orvg = (2 + 02)0, + 20,(Dyva + Byy)

+ 1% (9:Q + 9ya) — BXA, (92 + 0:09)Q + (920, + 9})a)
+ (@ — QL)ACAN+ D:(CANQ) + 8y (CAua) )
+ 1S H(QY, — QY)INAL — N, 2 v, (4.20)

rxr

45



% Ay = (92 + 85)% + ﬁgday(axvx + Oyvy)

B2
A

+ 2,1 (( yy — Q22)0yCA + 02 (CApg) — 8y(<AMQ)>

+ @ (63:(] - 8yQ) -

" (83 + 0020 — (820, + 9)Q)

+ B35 H(QY, — QU)INAL — Ny 2 vy, (4.21)
A - 3 C .
St 0Q = — (020 +0,0,)Q — (O, — Dyve) + 5 (Drve = Dyv,) - B:;h (1-X2(02+02)Q
+ AALQ, (4.22)

St710iq = —(va0s + vy 0y)q + Q(Duvy — Dyvs) + %(axvy + Oyvs) — BXA (1= X202 +02) q
27\h

+ ANApug, (4.23)
dni = D; (9% + 85)nz —Sr[(1 — i)ni(Opvy + Oyvy) + V0,15 + v, Oyn;] + T Z Vit (4.24)
k

Here, we have omitted tildes on variables for notational convenience. The chemical reaction rates are
still dimensional as written, and are nondimensionalized in the mass conservation equation by being
multiplied by the characteristic time, 7. The dimensionless parameters are defined as

Ut
Reynolds number = Re = PZZ — ratio of inertial to viscous forces (4.25)

n

Ur . . . . .
Strouhal number = Sr = - = ratio of times scale of interest to time scale of fluid flow  (4.26)
72% = n2¢ /n = ratio of 2d bulk to shear viscosity (= 3) (4.27)
[B1 = coupling constant of stress to molecular field (4.28)
~ X X . . .
X = = = ratio of alignment forces due to molecular field to active stress (4.29)
(CAp)o  Uymy
By = P2 = ratio of viscosity of rotational alignment to viscosity (4.30)
n

Ap = /€ = ratio of hydrodynamic length scale to characteristic length (4.31)
An, = £,,/¢ = ratio of nematic correlation length to characteristic length (4.32)
~ _ Dit : e e
D; = = ratio of characteristic time scale to diffusive time scale (4.33)

£2
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4.2 Dimensionless equations for particular choice of /, 7, and U

Following Bois, Jiilicher, and Grill, PRL, we consider only flows driven against viscous dissipation and
frictional losses by active processes. Here, the emphasis is on studying dynamics due to regulation of
active stress by diffusing, being advocated, and reacting species. To this end, we take ¢ = ¢, = \/n/v
as the characteristic length. This is the decay length of the velocity profile due to a step in active stress
in the absence of nematic order. The resulting velocity has a maximum of order

- (CAwo _ (CAu)o, (4.34)

VY 94

which we take to be our characteristic velocity. Finally, we take the time scale of interest to be the
diffusive time scale of species 1, 7 = 7p = ¢?/D;. In this case, the Strouhal number is a Péclet number.

_ue (CAM)O'

Sr=Pe= - = o (4.35)
Then, the governing equations are
Re vz = (02 + 02)vy + 305(0pvy + Oyvy)
Pe Y
+ 51X (0:Q + 9y0) = BIXAL (02 + 0.09)Q + (820, + 5})a)
+(Q% — Q1)0:CAR+ Do (CARQ) + Dy (CApg)
+ B162Pe QY — Q2,)0xAAL — g, (4.36)
R vy = (92 + 820, + 30, (B + Dy0,)
Pe Y
+ 61X (9ea — 0,@) = BA2 (93 + 0:0)a — (820, + 9)Q)
+(QY, — QL) CAW + 02(CApg) — 0,(CALQ)
+ B182Pe (@Y, — QL) NAL — vy, (4.37)
Pe™'0,Q = —(v:0r + vy0,)Q — (v — Dyvz) + %(c%vx = Oyvy) = g; (1-X07+0))Q
+ MALQ, (4.38)
Pe 101q = — (0.0 + v,0,)q + Q(Bpvy — Byvy) + %(&va + Oyvg) — Bj\h (1= A2(02 + 85)) q
+ M pg, (4.39)

on; = (83 + 8,3)nZ — Pe [(1 — a;)ni(02ve + Oyvy) + 03015 4+ vyOyni] + Tp Z Vii Tk (4.40)
k
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5 Numerical solution strategy

To solve equations (2.191), (2.192), (2.193), (2.194), and (2.195), we employ implicit-explicit (IMEX)
methods. We split the problem into the linear and nonlinear parts. The linear parts are integrated
with implicit time stepping and the nonlinear parts explicitly. We do all of this in Fourier space with
Re/Sr =~ 0 (i.e., the left hand sides of (2.191) and (2.192) are both zero). We will also take a; = 0 Vi.
Further, note that Q%, — QY, = ng — QY% = 1/2. We solve for the velocity at each time step and

integrate Q, q, and n; in time.

For this discussion, we assume we have periodic boundary conditions in both x and y.

5.1 Generic VSIMEX strategy

We adopt a variable step size IMEX scheme. The step sizes are chosen using a PID controller that
keeps the relative change in values of the solution within a set tolerance. I know give the basic VSIMEX
strategy.

Consider a set of PDEs,
Ou = f(u) + g(u), (5.1)

where f(u) is a nonlinear function of w and g(u) is linear. Note that both f(u) and g(u) may contain
spatial differential operators, but for g(u), these operators must be linear. Let k, be the step size for
numerical integration step n. Let U™ be the numerical solution for step n and let wy,4+; = kpyi/kyn. The
general s-step VSIMEX scheme is, as given by Wang and Ruuth, J. Comp. Math., 26, 838-855 (2008),

ZO‘J’ g = Zﬂmf (U +9) +Z%ng (Ut (5.2)

n+sl =0 =0

The constants «, 8, and  are given in the Wang and Ruuth paper. We see that the current step
appears on both sides, but only in linear terms. Therefore, only the linear terms have implicit time
stepping, so we do not have to solve nonlinear equations at each time step. We instead need to solve a
linear system, which involves inverting a (potentially large and stiff) matrix. As we will see, doing the
time stepping in Fourier space often avoids the necessity to perform this matrix inversion. Instead, for
our particular system, we need only to invert a 2 x 2 matrix.

The special cases we apply are second order semi-implicit backward differencing formula (SBDF2)
and second order Crank-Nicholson-Adams-Bashforth (CNAB2). In these cases, we have

n+2 _ yrn+1l 1
oNape: U (1 + 3) FUY) = Z U™ + 5 (9(U™2) + g(U™H) (5.3)
Kot 2 2 2
1 (142w w?
SBDF2 : — U - (14w U™+ ——0U") =(1 Uty —wf(U” unt?
e (T2 0 U4 (U7 ) = (@) = (U7 + g0 ),
(5.4)
where we have taken w = wy4+1 = kpn41/ky, for simpler notation.
5.2 Our problem in Fourier space
Re-writing (2.191) and (2.192) in Fourier space gives
K0y + 72 (K20, + kokyby) + €20, = fo (5.5)
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K20y + 00" (kokybe + ko0y) + €, %0, = s (5.6)
where

51ﬁ2

fo = ; [ﬁlxacmc? Fhyi) + ALK (k@ kyd) + 2 CA - koCBIQ + by T + P2 1, 3R ] (5.7)

B132

fy= :7 [ﬁlx(kxé — kyQ) + B1LE? (ko — Ky Q) + 2y CAp+ keCApg — kyCAPQ +

k:yA/A\,u] . (5.8)

To simplify notation, we have denoted the Fourier transform of Q as Q. We can solve (5.5) and (5.6)

for v, and ,.

(K + iiaky + 0,%) fo — Tk
(L + k> +6,%) (B + 6,7)

(5.9)

Vp =

_ (R 4 02) fy — i kaky o
T (U BOR +67) (R4 67)

(5.10)

We can take an inverse Fourier transform to solve for v, and v,. An important caveat, however, is
that when v = 0 (and therefore £, > = 0), the solution of (2.191) and (2.192) is only unique up to an
additive constant with periodic boundary conditions. Le., v, = vY 4+ vl(x,y) and v, = vo + Ul(l‘ Y)-
Conveniently, this additive constant is given by the zero mode in Fourier space. The reason for this is
that fw and fy are both functions of derivatives of periodic functions. This means than when the right
hand side of (5.5) and (5.6) is written as a Fourier series, there is no constant term. Therefore, the
zero mode of 9, and ©, must be zero.

With (5.9) and (5.10) in hand, and denoting the Fourier transform as F', we have

NAF[03vy — Oyvy] = ind(kyty — kyDy)
= —Bux [ (K2 (2 + 637) + 42 K2K2) Q — 2521k — K2)hhyd|

— BiLK? [(18 (K + X;%) + 4ﬁ3dk§k§) Q — 2024 (k? — k2)k, k;yq}

1 o B _
— 5 (k2 = E2)(k? + 6% C - (k;2(k2 072 4n2dk2kz2) CAPO
2d 12 NI Pib2 o 2\(1.2 1 p=2\YA
+ 20y, ko ky (ky — Ky ) CApg — 5 (ky — k) (K™ + £, °)A\Ap (5.11)

NdF[0yvy + Oyvy] = ind(kyty + ky0y)
= Bux [2 (2 — KD)koky, @ — (K2 (K + 6,2) + 72 (k2 — k2)*) d]
+ B LK [2~2d(k — K2k, Q — <k2 (K2 4+ ;%) + m2d(k2 — k§)2) q}
— ok (K + 0,2 CAp + 2720k ky (K2 — k2)CARQ

- (k2<k2 02+ (k2 - kf,)?) CApq — Brokaky (K2 + CONAL. (5.12)
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where
d= ((1 + iR 4 0 ) (k2 +6;2) (5.13)

the denominator in the expressions for the Fourier transforms of the velocity.

Note that we can solve for v, and v, by performing an inverse FFT on (5.9) and (5.10). Given
these solutions and the expressions for the derivatives of the velocities in Fourier space, we can write
(2.193) in Fourier space.

~

0Q =5 (\+Li)Q

B
P (4 L) (12 (6 + 67) + 472 K2K2) Q — 2721k — K2y d|
2 d X h n My ( x y )Pz Ryd
g |50~ K02+ 60 (102 + ) + 42028 ) B
27712)d(kx k;)krky@}
%f;( — K2 (K + £, XA
+F |~ (020 +0,0,)Q = a(@avy — 0y02) + AAQ) (5.14)

where d is given by (5.13). Here, the first three lines are linear in Q and §. The remaining terms are
nonlinear. We can also write (2.194) in Fourier space.

. 1 .
%G =——(x+Lk»q
B2

L (e T[22 — KRy @ — (2 (9 4 67) + 72002 — 1)) ]
fd [k ky (K2 + 6,2 — 20720k, by (K2 — K2)CARQ
(KR + %) + 7282 — K2)?) CApag]
_ ijj kaky (K2 + 62 NAJ
Y F [—(uxax +,0,)q + Q(Opvy — Dyvy) + AAuq] (5.15)

Finally, we can write (4.24) in Fourier space, again with «; = 0.

8{&@ =—-D; anz + F

—02(nivg) — Oy(nivy) + Z I/ki’l“k] . (5.16)
k

In this case, the first term is linear.
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5.3 Implementation

To help reduce bugs, we introduce the following constants, recalling d, already defined in (5.13).

a=((1+3HE +62) (K + 6,2) = aolag + 72K?) (5.17)
ap = k* + ¢; 2 (5.18)
oy = X (5.19)

n
L
ag = AL 2 (5.20)
n
_ PP
as = (5.21)
k? + 2k + £
gy = M B (5.22)
d
]{72 ~2dk2 672
a5 — o N+ 6 (5.23)
d
~2dk k
ag = 22 (5.24)
d
= (x + Lk?) (5.25)
Ba
ag = ﬁ(x + LE?) (5.26)
2nd
ag = ao k* + 4, K2k, (5.27)
aro = 207, (k3 — kj)koky (5.28)
an = aok® + 0 (k3 — kz)Q (5.29)
_ B
alp = 217d (530)
a13 = apkzky (5.31)
aog(k? — k2
ayy = M (5.32)
2
_ BiBe
als — 27]d (5.33)
a1 — kxky ag. (5.34)
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With these definitions, we have

k
fy:z[al(kxq— yQ)—i-ag(k‘xq— yQ)_i_l

2
O = agfo — a6fy

@y = a5fy - a6fx

8:5@ = —CL7Q —as (agQ - alod) — a12 (a14C/A\N + CLQCK,U«\Q - (110@) — azs a14)\/A7l

+F [—(vmam + 0y0,)Q — q(8pvy — Oyvz) + )\A,uQ}

014 = —arq + ag ((ho@ - a116§> — a2 <a13CAM — a100ApQ + anCAMQ) — a15 16 A AL

+F [—(vmam + 0y0y)q + Q(8yvy — Byvy) + )\A,uq}

875’&2' =—-D; ]{52’0@ + F

— (0p(nivg) + Oy(nivy)) + 1 Z VkiTk] .
k

To write the IMEX scheme, we make the following definitions

fQ(Q 4, 1) = —aia <014C/A\M + a9m - am@) —ais a14)\/A\M
+F [~ (0, +0,0,)Q — a(04v, — 0y02) + AAGQ]

fo(Q, 4, 7i) = —arz <013C/A\M — a10CApQ + an@) — a15 a16A AL
+F [~y + 0,0,)a + Q0uvy — 0yv2) + \Apug]

k

_ (8x(nﬂ}x) + ay(nﬂ)y)) +T7 Z Vk:z"’"k]

bi1 = —ay — agag
b1z = bo1 = asaio
bea = —a7 — agaiy,
and rewrite the above equations as
0Q =b11Q + b12g + fo(Q,

O = ba1Q + baod + fq(

>
> @> ©>
§> >
SN— 3)

Oy = —Dik*n; + fn(Q,

52

fo=1 I:CLI (ka:Q + kyQ) + a?(ka:Q + kyQ) + ? CAp+ kCApQ + kyCA:UJq + ask  AAp

A+ keCApg — kyCARQ + azk AAu]

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)
(5.46)

(5.47)

(5.48)
(5.49)

(5.50)



Note that in practice, we set the zero mode in d to be unity when v = 0 to avoid divide by zero errors
when computing the other constants. This is of no consequence because in the velocity calculations,
we intentionally set the zero modes of fx and fy to be zero, and in all other cases, the zero modes are
multiplied by a zero wave number in all expressions.

5.3.1 CNAB2 implementation

We can write the expressions for the CNAB2 scheme. We abbreviate fQ(Q", q",nt) as fo(U™), with
similar abbreviations for fq and f,.

Qn+2 _ Qn+1

knJrl

w

(1+35) fo@™) =5 foU™) + % (b1 (@2 + Q™) + bia@* 2 +3)) (5:51)

n+2 n+1
q —(q Wy 2 n w2 n 1 An An AT M
A (1+ f) f (U™ — 5 L")+ 5 (bgl(Q T2 QM) + baa (" + ¢ “)) (5.52)

kn+1 2

ﬁn+2 o ’fLT-H_l R R ka

L (1+5) Fu @) = 5 fui @)= (0272 + a7, (5.53)
n

Rearrangement of these equations yields

1 b . b R ) ' . A b
< - 11> Ont2 12 gnt2 (1 + %) fo(umthy - %fQ(Un) I < n 11) O+l 4 22 gnt

knyr 2 2 ko1 2 2
(5.54)
b1 An+2 L b\ oo W\ & ormrly W og b1 Ant1 L b\ p
721 An Y22 n = (1 d n I n Y21 An Y22 n
5 ¢ T 2 ) <+2)fq(U )= LU+ 5@+ T )
(5.55)
1 D;k? 19 W\ » w o, 1 D;k?
=l pnt2 = (142 2 - n+ly % (U™ D An+1
(kn+1+ 2 )nz ( +2)f1(U ) 2fz(U )+<kn+1 2 nz
(5.56)

We can now solve for the values of Q"2 §"+2, and ﬁ?"’g. We define rhsg and rhs, as the right hand
side of the top two equations. Then, we have

: 1 1 b b
= — 22 ) thsg + 22 1h 5.57
@ ( 1 _m)( 1 _@)_blgbgl [(an 2>TSQ+2qu} (5.57)
kn1 2 kn1 2 4
1 b 1 b
I <L_b171>< 1 _lm)_bub21[2rsQ+<kn+1 2>rsq} (5.58)
kn+1 2 kn+1 2 4
1 W\ 2 W A 1 Dk2
An+2_7 w n+1 o w n B i il
1 1 D;k2 (1 + 2) fm (U ) 92 fm(U )-1— (k‘n_t,_l 72 > n; ] . (5.59)
kn+1 2
Note that this solution requires that the matrix
b 1 by (5.60)
2 kn+1 2



is nonsingular. We can show this is the case by considering its determinant. The determinant is

1 bi 1 b2 biy . bi1b22 bty
o _ 2223 212 ositive terms 1- . 61
(kn+1 5 > (k’n+1 5 > = positive terms 1 br1bos (5.61)

Since the product bi1b9s is positive, we have only to show that the ratio

2
b12

b11b22

<1 (5.62)

to prove that the determinant is positive and the matrix therefore nonsingular. Evaluating the ratio,

2 2 92 2 2
bio _ agayo < a0 a19

— — 5 = — 5 < L. (5.63)
b11b99 positive terms + agagaiy agail positive terms + af,

Therefore, the determinant is positive and the matrix is nonsingular.

5.3.2 SBDF2 implementation

The formulae for the SBDF2 method are derived analogously.

(s~ ) Q7 =t = (o™ —wfa() + 1 (1400 = 12 0")

n+1(1 +w kn+1 1+ w

(5.64)
142w . R w2
—b ~n—+2 _ b ~n+2 = (1 Un+1 _ Un 1 n+1 AN

214 + (kn-‘rl(l + (-U) 22) 1 ( * W)fq( ) wfq( ) * n+1 ( + w)q 14w 9

(5.65)
<—l+ih“4_z)k2) AP = (14 w) fo, (U™ — wh,, (U™) + ((14_w)ﬁﬂ+1__uﬁzﬁn)_
kn+1(1+w) ! ¢ i i n+1 v 1 + w '

(5.66)

Again, defining rhsg as the right hand side of the first equation, etc., we have

A 1 142w
Q" = [( — 522> rhsg + bio rhsq] (5.67)
(it — o) (ot — ) — buabar L\ (150
1 [ 142w
~n—+2
q = bo1 I‘hSQ + < — b11> I‘hSq:| (568)
142w 142w kn+1(1
(rotits —on) (s — ) — brabn e
hs,,.
A2 = e B (5.69)
? 142w 12
T (1) T Dik

We can show that the system of equations always has a solution in a similar manner as we did for the
CNAB2 case.
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Appendix: Helpful relations

Anp and B,g are second order tensors. u, and v, are vectors. f is a scalar valued function.

Indicial and vector notation

uava:u-v:uTU

U Vg = UV =UQV
€afy UBVy = U X V
Apgrg=A-v
Ang Va =AT .y
Ay Bgy =A-B
Awp Byp=A- BT
AopBay = AT - B
Ao Bag=A:B=Tr (A" B)
AapBgo = A: BT =Tr (AT - BT)
Anp Bag = Aapg Bg, for symmetric A
Apa = Aapdap = Tr(A)
AauBpyCop = AT -C-B
Ouf =Vf=grad f
O Vo =V -v=divo
€aByOavg =V X v =curlv
Oavg =Vv=VRu
OgAap=V-A

0o Aap =V - AT

Oa (Vavg) = 0g (Vavg) = Va0gvg + V30800 = (V -v)v +v - Vu

|Aa5| = 61'11‘2...1'”1411'1/121'1 e Anzn =det A

dapbapg =3
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Properties of the Levi-Civita symbol

(Some of these properties are repeated below.) A tensor A,g may be split into a symmetric part A‘;B
and an antisymmetric part Agﬂ. We denote an antisymmetric tensor with an a superscript and a
symmetric tensor with an s superscript. A 5 may be made traceless by simply subtracting a third of

the trace from the diagonal, Agﬂ = AZB — 0ap Ay /3.

1 if afy=123,231,312
€aBy = -1 if afy=321,213,132
0 otherwise

€abc€123 = 0q1(0p20¢3 — 0630¢2) — 0a2(0p10c3 — Ip3dc1) + da3(p10c2 — Op2den)

€aBy €ady = 5,365'yu - 5Bu5767 OF €gpc€a23 = 0p20¢3 — 0p30¢2
€aByEaps = 25767 O €gpc€ab3 = 2503

€apy€apy = 6

1 1
§6aBW€5mA5u = Agﬂ = §(Aa6 — Aga)

eaﬁvA%7 = 2(A33, — A3y, AC1L2)T

0 as —a9
€aByary = —as 0 al
as —ai 0

Transformation of tensors under arbitrary rotation

(5.99)

Let T,y --- be a rank n tensor and R, denote an arbitrary rotation tensor. The transformed tensor

undergoing rotation is

T/il/pm = (R/LO[RV,BRp'y e )Taﬁfy = RTO‘/B’Y

The following properties hold for an arbitrary rotation.
R,uaRua = 5#1/

/
O

= RuaRupdap = R sR,p = O

ro_ _ _
€up = BuaRupRpyeapy = €uvp| Rapl = €uvp

Integration by parts

(5.100)

(5.101)

(5.102)

(5.103)

We consider integrations of functions (which may have different tensorial order) u(z) and v(z), when

z is a vector. We introduce the notation below.

/ dx = integral over volume {2
Q

56

(5.104)



/ dr = integral over surface 052
oN

v = outward unit normal from the surface 0f)

/dwf@ava:/ dacfvaua—/dmva@af
Q oN Q

/dxvaﬁ f= dmfvaua /d:ﬁf@ava
Q

Useful integrals:

/d$va8,gAa5:/ dxr Ang vs Va—/da:AaﬂaavB
Q 0N Q

/dvaE)ava:/ d:z:vQUOéVa—Q/da:vavg(‘)avg
Q 0N Q

Symmetry properties of 2nd order tensors

A tensor A,3 may be split into a symmetric part A3 op and an antisymmetric part A
antisymmetric tensor with an a superscript and a symmetric tensor with an s superscrlpt. A3 3

made traceless by simply subtracting a third of the trace from the diagonal, AZ 5= A3 5~

Aap = Ajg + Al = Adg + Alg + SapAsy /3

1
ap = 5(Aap + Aga)
.1 1
af = §(Aaﬁ — Apa) = §€a5'y€5wf45u
504514(16 = Aaa
S AS
af — “1Ba

6 = —Af, = diagonal elements of Afg =0

AOéOé - AZ(X
AlyBig =0

1
AspBag = g(AaBBaB — AapBga)
S S 1
AopBap = 5(AapBap + AapBga)

o7

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

. We denote an
may be

OapAyy /3.

(5.111)

(5.112)

(5.113)

(5.114)
(5.115)
(5.116)
(5.117)
(5.118)
(5.119)
(5.120)

(5.121)

(5.122)

(5.123)



AspBls = %(AaﬁBaﬁ + AapBsa) — éAaaBﬁ,B
€aprAag = €apry Ay =0

EanAZB = GanAf%y = 2(Ag3, —ASy, %2)T
If Cop = AayBpy, then

1
géﬁ - 5(‘4@73/37 + ApyBay)

1
a8 = 5(‘4&7357 — Ay Bary)-

o8

(5.124)

(5.125)

(5.126)

(5.127)

(5.128)



