
In this document, I derive (in a rather lengthy, but hopefully expository, way) the governing equa-
tions for an isothermal active viscous nematic fluid in the absence of external fields. I will consider only
temperatures above the critical temperature for the isotropic-nematic transition. In this situation the
director does not necessarily persist throughout space. We use the tensorial nematic order parameter,

Qαβ = S(nαnβ −
1

3
δαβ), (0.1)

defined here for a uniaxial nematic liquid crystal. Note that I have used indicial notation, which I will
throughout, in which like Greek indices (representing directions x, y, and z) are summed over. Latin
indices are not summed over unless done so explicitly. See the appendix for useful relations for tensors
and corresponding syntax for other notation.
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from which I pulled information are

• P. D. Olmsted and P. M. Goldbart, Phys. Rev. A, 41, 4578–4581, 1990.

• P. D. Olmsted and P. M. Goldbart, Phys. Rev. A, 46, 4966–4993, 1992.

• K. Kruse, et al., Eur. Phys. J. E, 16, 5–16, 2005.

• G. Salbreux, J. Prost, J.-F. Joanny, Phys. Rev. Lett., 103, 058102, 2009.

• J. S. Bois, F. Jülicher, S. W. Grill, Phys. Rev. Lett., 106, 028103, 2011.

• S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, Dover, 1984.

• G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals, Fundamentals, Springer-Verlag,
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• P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd Ed., Oxford University Press,
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• M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction, Springer-Verlag, 2003.

I begin with the derivation of a more familiar system, an isotropic viscous fluid in which chemical
species may diffuse and undergo chemical reactions. This illustrates the method:

1) Write down the conservation laws for mass, linear momentum, and angular momentum.

2) Write down an expression for the entropy production rate.

3) Simplify the expression for the entropy production rate to enable identification of conjugate
thermodynamic fluxes and forces.

4) Expand the thermodynamic fluxes to linear order in the forces, honoring the symmetries of the
system and the Onsager reciprocal relations, to obtain the constitutive equations.

1 Illustrative example: diffusion in a viscous fluid

We consider here a multicomponent isotropic viscous fluid.
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1.1 Mass conservation

Conservation of total mass is

∂t ρ = −∂α ρ vα, (1.1)

where ρ =
∑

i ρi, where ρi is the density of species i. Using the chain rule on the right hand side, this
may alternatively be written as

(∂t + vα∂α)ρ = −ρ∂αvα, (1.2)

where the left hand side is interpreted as the time derivative of the density of a fluid element in a
co-moving frame. It is convenient to define the time derivative of the fluid element in the co-moving
frame, the so-called material derivative,

d

dt
≡ ∂t + vα∂α. (1.3)

We can also write down the mass conservation relation for species i as

ρ
d

dt

ρi
ρ

= −∂αji,α +mi

∑
k

νkirk ∀ i (1.4)

where ji,α is the mass flux of species i with respect to the barycentric motion (ji,α = ρi(vi,α − vα)),
mi is its molar mass, and νki is the stoichiometric coefficient of species i in chemical reaction k, which
proceeds at rate rk. Using (1.1), this can equivalently be written in terms of the mole fractions, ni, of
the components.

∂t ni + ∂αnivα =
dni
dt

+ ni∂αvα = −∂α
ji,α
mi

+
∑
k

νkirk ∀ i. (1.5)

The mass flux of the individual components satisfy∑
i

ji,α = 0. (1.6)

1.2 Linear momentum conservation

The statement of linear momentum conservation is

∂t(ρvα) = −∂β [σαβ + ρvαvβ] , (1.7)

where σαβ is the total stress tensor and the bracketed term is the total momentum flux tensor. The
left hand side is the rate of change of momentum and the right hand side is the sum forces acting on
the fluid (the total momentum flux due to flow). In the co-moving frame, this is

ρ
dvα
dt

= ∂βσαβ, (1.8)

which is perhaps more transparent. It says that the rate of change of momentum in the co-moving
frame is given by the forces acting on the fluid.
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1.3 Angular momentum conservation

Henceforth, it is convenient to define a small fluid element occupying volume V . The shape of the
fluid element may be distorted in time, but the total mass contained therein cannot1. The angular
momentum of the fluid element is2 ∫

V
d3x ρεαβγxβvγ , (1.9)

where εαβγ is the Levi-Civita symbol. The time rate of change of angular momentum is given by the
torque acting on the fluid element.

d

dt

∫
V
d3x ρεαβγxβvγ =

∫
dSδ εαβγ xβ σγδ, (1.10)

where dSα is a differential surface element with an outward pointing normal, and we have written the
expression in the co-moving frame.

1.3.1 Left hand side of angular momentum balance (1.10)

We consider first the left hand side of (1.10). We cannot trivially differentiate under the integral sign,
as V changes with time. We can, however, convert the integration over the volume with an integration
over the total mass m = ρV , which does not change with time, provided we are in the co-moving frame.
Therefore, we can take the material derivative (∂t + vα∂α) under the integral sign, giving

d

dt

∫
V
d3x ρεαβγxβvγ =

d

dt

∫
dm εαβγxβvγ =

∫
dm εαβγ

d

dt
xβvγ

=

∫
V
d3x ρεαβγ

d

dt
xβvγ =

∫
V
d3x εαβγxβρ

dvγ
dt

+

∫
V
d3x ρεαβγvγ

dxβ
dt

. (1.11)

Using linear momentum conservation (1.8), the first integral becomes∫
V
d3x εαβγxβρ

dvγ
dt

=

∫
V
d3x εαβγxβ∂δσγδ. (1.12)

Using the fact that ∂txβ = vβ and ∂δxβ = δδβ, the second integral becomes∫
V
d3x ρεαβγvγ (∂t + vδ∂δ)xβ =

∫
V
d3x ρεαβγvγ (vβ + vδδδβ) = 2

∫
V
d3x ρεαβγvβvγ . (1.13)

Now, the tensor vβvγ is symmetric, so εαβγvβvγ = 0, and thus the integral vanishes. Therefore, the
angular momentum balance is ∫

V
d3x εαβγxβ∂δσγδ =

∫
dSδ εαβγ xβ σγδ. (1.14)

1I just stated the results of conservation of mass and linear momentum, which are often derived using the concept of
a small volume element. They are more familiar, so I just stated them without going into detail on their derivation.

2In perhaps more familiar notation, this is
∫
V
d3xx× ρv.
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1.3.2 Right hand side of angular momentum balance (1.10)

Considering now the right hand side, we can use the divergence theorem to convert the surface integral
to a volume integral. ∫

dSδ εαβγ xβ σγδ =

∫
V
d3x εαβγ ∂δxβσγδ. (1.15)

Again using the fact that ∂δxβ = δδβ, we can write the integrand as

εαβγ ∂δxβσγδ = εαβγ(σγδδδβ + xβ∂δσγδ) = εαβγ(σγβ + xβ∂δσγδ). (1.16)

1.3.3 Result of angular momentum conservation: symmetry of the stress tensor

Equating our new left and right hand sides of (1.10),∫
V
d3x εαβγxβ∂δσγδ =

∫
V
d3x εαβγ(σγβ + xβ∂δσγδ) ⇒

∫
V
d3x εαβγσγβ = 0. (1.17)

This must be true for any arbitrary volume element V , so

εαβγσγβ = 0. (1.18)

Using properties of the Levi-Civita symbol,

εαβγ = −εαγβ = −εγβα, (1.19)

so

−εγβασγβ = 0. (1.20)

Applying εδµα/2 to both sides gives

−1

2
εδµαεγβασγβ = −σaδµ = 0, (1.21)

which means that σαβ is symmetric. This result is true for an isotropic liquid (where we have neglected
rotations of its constitutive particles), but is not in general true, e.g., for fluids with nematic or polar
order.

1.4 Energy conservation

1.4.1 Total energy balance

Let e be the energy density per unit mass of the fluid, such that the total energy in a fluid element
of volume V is

∫
V d

3x ρe. The time rate of change of energy in the fluid element is given by the sum
of the advective flux of energy out of the volume and the power imparted by body and surface forces.
We assume the fluid element is adiabatic (there are no temperature gradients in the fluid), so there is
no heat flux. Further, we do not consider here body forces, since we assume there are no fields acting
on the fluid. Therefore, the time rate of change of total energy in the fluid element in the co-moving
frame is3

d

dt

∫
V
d3x ρe =

∫
V
d3x ρ

de

dt
=

∫
dSβ σαβvα, (1.22)

3In the stationary frame, the expression is ∂t
∫
V
d3x ρe = −

∫
dSα ρvαe+

∫
dSβ (σαβ − ρvαvβ)vα.
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where we have applied the technique of section 1.3.1 for taking the material derivative under the integral
sign. The right hand side is the power imparted by surface forces (force times velocity)4. Application
of the divergence theorem gives ∫

V
d3x ρ

de

dt
=

∫
V
dx3 ∂βσαβvα. (1.23)

This must be true for arbitrary volume V , so

ρ
de

dt
= ∂βσαβvα (1.24)

1.4.2 Expression for internal energy

The per-mass energy density is given by the sum of the per-mass internal and kinetic energy densities,
or

e = u+ vαvα/2. (1.25)

Substituting this expression into the expression for total energy conservation (1.24) gives

ρ
d

dt
(u+ vαvα/2) = ρ

du

dt
+ ρvα

dvα
dt

= ρ
du

dt
+ vα∂βσαβ = ∂βσαβvα = vα∂βσαβ + σαβ∂βvα (1.26)

where we have use the chain rule and the equation for conservation of linear momentum (1.8). This
simplifies to

ρ
du

dt
= σαβ∂βvα. (1.27)

1.5 Entropy production rate

In order to identify the thermodynamic fluxes and forces, we need to write down the entropy production
rate of our fluid element. The entropy production rate is due to irreversible (“dissipative”) processes
within the fluid element. The total entropy in the fluid element can also change due to reversible
processes. We shall call the rate of entropy production in the fluid per unit volume per unit time σ,
not to be confused with the stress tensor, σαβ. Writing an entropy balance for a fluid element,

ρ
ds

dt
= −∂α jS,α + σ, (1.28)

where s is the per-mass entropy and jS,α is the entropy flux to the surroundings. It is clear then, that
the change in entropy by irreversible processes is given by σ. Our goal is to write an expression for
ρds/dt in the form of the above equation in order to identify σ.

4A subtle point: In this analysis, we have neglected the so-called kinetic energy of diffusion. Foreseeing that we will
neglect inertial terms in biophysical applications this is justified. For discussions, see section II.4 for de Groot and Mazur,
Non-equilibrium Thermodynamics.
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1.5.1 The Gibbs relation

Using the combined first and second laws of thermodynamics, we can write the differential for the
per-volume (i.e., dV = 0) internal energy,

d(ρu) = Td(ρs) +
∑
i

µidni, (1.29)

where the chemical potential is defined as µi = ∂(ρu)/∂ni. We can therefore write the time rate of
change of the entropy in the co-moving frame as

T
d(ρs)

dt
=

dρu

dt
−
∑
i

µi
dni
dt
. (1.30)

This is the so-called Gibbs relation.

1.5.2 Identifying σ and jS,α

Applying the chain rule to the left and right sides yields

ρT
ds

dt
+ Ts

dρ

dt
= ρ

du

dt
+ u

dρ

dt
−
∑
i

µi
dni
dt
. (1.31)

Substituting the continuity equation (1.2), the species mass balance (1.5), and the expression for the
time rate of change of internal energy (1.27) gives

Tρ
ds

dt
− Tρs∂αvα = σαβ∂βvα − ρu∂αvα +

∑
i

µi

(
ni∂αvα + ∂α

ji,α
mi
−
∑
k

νkirk

)
. (1.32)

Rearranging,

Tρ
ds

dt
=

[
σαβ + (−ρu+ Tρs+

∑
i

µini)δαβ

]
∂βvα +

∑
i

µi

(
∂α

ji,α
mi
−
∑
k

νkirk

)
. (1.33)

We apply the chain rule to get

µi∂α
ji,α
mi

= ∂αµi
ji,α
mi
− ji,α
mi

∂αµi. (1.34)

Using this in our expression for the time rate of change of per-mass entropy density, we get

Tρ
ds

dt
= −∂α

(
−
∑
i

µi
ji,α
mi

)
+

[
σαβ + (−ρu+ Tρs+

∑
i

µini)δαβ

]
∂βvα

−
∑
i

(
ji,α
mi

∂αµi + µi
∑
k

νkirk

)
. (1.35)

Comparing to (1.28), we have identified the entropy flux as

jS,α = −µi
T

∑
i

ji,α
mi

, (1.36)

and the entropy production rate as

σ =
1

T

[(
σαβ + (−ρu+ Tρs+

∑
i

µini)δαβ

)
∂βvα −

∑
i

(
ji,α
mi

∂αµi + µi
∑
k

νkirk

)]
. (1.37)
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1.5.3 Consolidating the material flux terms

The fluxes ji,α of the constituent species are not independent, being related by (1.6), which says that
the sum of the species fluxes is zero. If we arbitrarily define species 0 to be that which is most abundant
(though this abundance specification is not necessary), we can specify the fluxes of the other species
using (1.6). ∑

i

ji,α
mi

∂αµi =
j0,α
m0

∂αµ0 +
∑
i 6=0

ji,α
mi

∂αµ0 = −
∑

i 6=0 ji,α

m0
∂αµi +

∑
i 6=0

ji,α
mi

∂αµi

=
∑
i 6=0

ji,α∂α

(
µi
m1
− µ0

m0

)
. (1.38)

Defining µ̄i ≡ µi/mi − µ0/m0, we get

σ =
1

T

(σαβ + (−ρu+ Tρs+
∑
i

µini)δαβ

)
∂βvα −

∑
i 6=0

ji,α ∂αµ̄i −
∑
i,k

rkνkiµi

 . (1.39)

The quantity Ak ≡
∑

i νkiµi is often called the affinity of species i in chemical reaction k.

1.5.4 The Ericksen stress

For reversible processes, σ = 0. We can separate the entropy production rate into terms that are
reversible (do not contribute to σ, even in the presence of chemical reactions or chemical potential
and velocity gradients) and irreversible (dissipative) terms that contribute positively to σ. Inspecting
(1.39), we see that chemical reactions change the entropy production rate. Similarly, if a chemical
potential gradient exists, the flux ji,α will be zero for reversible processes. However, if the velocity
gradient tensor ∂βvα is nonzero, we may have zero entropy production if

σαβ = (ρu− Tρs−
∑
i

µini)δαβ. (1.40)

This is the reversible portion of the stress tensor (it does not contribute to dissipation), and we call it
the Ericksen stress.

σe
αβ = (ρu− Tρs−

∑
i

µini)δαβ = −pδαβ, (1.41)

which in the simple case of an isotropic viscous fluid is just given by the thermodynamic pressure p.

1.5.5 The deviatoric stress

We define the portion of the stress that is responsible for entropy production the deviatoric stress, and
is given by

σd
αβ ≡ σαβ − σe

αβ. (1.42)

This is the stress that contributes to dissipation. Using this definition in (1.39), we get

σ =
1

T

σd
αβ∂βvα −

∑
i 6=0

ji,α ∂αµ̄i −
∑
k

rkAk

 . (1.43)
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1.5.6 Splitting the stress tensor

It is convenient to split the stress tensor into a diagonal part, a symmetric, traceless part, and an
antisymmetric part.

σd
αβ = δαβσ

d
γγ/3 + σ̊d,s

αβ + σaαβ, (1.44)

where for this case of an isotropic fluid, σaαβ = 0, as we learned from analysis of angular momentum
conservation in section 1.3.3. We do the same with the velocity gradient tensor.

∂βvα = δαβ∂γvγ/3 +

[
1

2
(∂βvα + ∂αvβ/3)− δαβ∂γvγ

]
+

1

2
(∂βvα − ∂αvβ)

= δαβ∂γvγ/3 + ůβα + ωβα, (1.45)

where we have defined

uαβ ≡
1

2
(∂αvβ + ∂βvα) and ωαβ ≡

1

2
(∂αvβ − ∂βvα) (1.46)

as the symmetric and antisymmetric parts, respectively, of the velocity gradient tensor, using some of
the relations listed in the appendix of this document. The latter is related to the vorticity by

(vorticity)α ≡ (curl v)α = εαβγ∂βvγ = εαβγωβγ . (1.47)

Using tensorial identities and the fact that σaαβ = 0, we get

σd
αβ∂βvα =

1

3
σd
αα∂βvβ + σ̊d,s

αβ ůβα. (1.48)

1.5.7 Final expression for the entropy production rate

Using the split stress and velocity gradient tensors, we arrive at the final expression for the entropy
production rate.

σ =
1

T

1

3
σd
αα∂βvβ + σ̊d,s

αβ ůβα −
∑
i 6=0

ji,α ∂αµ̄i −
∑
k

rkAk

 . (1.49)

1.6 Constitutive relations

1.6.1 Thermodynamic fluxes and forces

Investigating (1.49) reveals that the entropy production rate is given by the sum of conjugate thermo-
dynamic fluxes and forces. Let Jj be a thermodynamic flux and Fj be its conjugate force. Generically,
the entropy production rate is

σ =
∑
j

JjFj , (1.50)

where Jj and Fj have the same tensorial character. At equilibrium the fluxes and forces vanish. Close
to equilibrium we may expand the fluxes to linear order in the forces.

Jj =
∑
k

LjkFj , (1.51)
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where the tensorial character of Ljk is properly chosen. The coefficients Ljk must respect the symme-
tries of the system. This is called the Curie principle. Similarly, Ljk must be positive definite, since
the quadratic form

σ =
∑
j

JjFj =
∑
j,k

LjkFkFj (1.52)

must be positive by the second law of thermodynamics. These are related to the Onsager reciprocal
relations. Note also the the expansion coefficients can in general be a function of any of the intensive
properties of the system.

1.6.2 Identification of fluxes and forces

From (1.49), we can identify the fluxes and forces (modulo a constant factor of 1/T ) and their tensorial
character.

flux force character

σdγγ/3 ∂γvγ scalar

rk −Ak scalar (∀k)

ji,α −∂αµ̄i polar vector (∀i 6= 0)

σ̊d,sαβ ůαβ symmetric, traceless tensor

1.6.3 Expansion of fluxes

We carry out the expansions of the fluxes to linear order in the forces. The most general expansion is

σd
γγ/3 = Lvv∂γvγ −

∑
k

LvrkAk −
∑
i 6=0

Lvfiα ∂αµ̄i + Lvsαβůαβ (1.53)

rk = Lrkv∂γvγ −
∑
j

LrkrjAj −
∑
i 6=0

Lrkfiα ∂αµ̄i + Lrksαβ ůαβ ∀k (1.54)

ji,α = Lfivα ∂γvγ −
∑
k

Lfirkα Ak −
∑
j 6=0

L
fifj
αβ ∂βµ̄j + Lfisαβγ ůβγ ∀i 6= 0 (1.55)

σ̊d,s
αβ = Lsvαβ∂γvγ −

∑
k

Lsrkαβ Ak −
∑
i 6=0

Lsfiαβγ∂γµ̄i + Lssαβγδůγδ. (1.56)

I have called the expansion coefficients L and labeled the expansion coefficients with a superscript to
designate what thermodynamic forces they couple. The code is given below.

superscript thermodynamic force description of thermodynamic flux

v ∂γvγ compressive stress
rk −Ak rate of chemical reaction k
fi −∂αµ̄i diffusive flux of species i
s ůαβ shear stress

The subscripts of the expansion coefficients L indicate their tensorial order.
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1.6.4 The Curie principle

The Curie principle states that the the phenomenological expansion coefficients must honor the spatial
symmetry of the system. In particular, if a symmetry in the system exists, application of an orthogonal
transformation representing that symmetry must leave the expansion coefficients unchanged.

To codify this notion, we note that application of an orthogonal transformation Rαβ (with |Rαβ| =
±1) to a tensor Tαβγ··· results in a transformed tensor T ′µνρ···

T ′µνρ··· = |R|ε(RµαRνβRργ · · · )Tαβγ···, (1.57)

with ε = 0 for polar tensors and ε = 1 for axial tensors. We will denote this transformation as

T ′αβγ··· = RTαβγ···. (1.58)

If a tensor is invariant under a transformation Rαβ, T ′αβγ··· = RTαβγ··· = Tαβγ···.

1.6.5 Application of the Curie principle: invariance under parity inversion

In the case of a simple isotropic fluid, the dynamics must be invariant to parity inversion, Rαβ = −δαβ.
Therefore, for a tensor L of rank n,

L′αβγ··· = RLαβγ··· = (−1)ε+nLαβγ··· = Lαβγ···. (1.59)

For the isotropic fluid, all ε = 0. Therefore, all tensors with odd order must be zero.

Lvrkα = Lrkfiα = Lfirkα = Lfivα = Lsfiαβγ = Lfisαβγ = 0. (1.60)

1.6.6 Application of the Curie principle: invariance under arbitrary rotation

An isotropic fluid is also invariant under an arbitrary rotation. Let Rαβ be a rotation tensor (|R| = 1).
For scalars,

RL = L (1.61)

is satisfied trivially, so all scalar coupling constants are, up to this point, unrestricted.

Polar tensors of order 1. Although we already showed them all to be zero, we consider first order
polar tensors, e.g., Lvfiα , under arbitrary rotation. They should be invariant to this, so

RLα = Lα. (1.62)

This holds only if Lα = 0, which is true of all polar tensors of first order, reiterating that

Lvfiα = Lrkfiα = Lrkfiα = Lfirkα = 0. (1.63)

Tensors of order 2. For second order tensors, we have

RLαβ = RµαRνβLµν = Lαβ. (1.64)

We multiply each side of the equation by a tensor constructed from two arbitrary vectors aα and bβ to
get the equality of two scalars.

RµαRνβLµνaαbβ = Lαβaαbβ, (1.65)
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or

LµνRµαaαRνβbβ = Lµνa
′
µb
′
ν = Lαβa

′
αb
′
β = Lαβaαbβ, (1.66)

where we have now affected a rotation on aα and bβ to get the rotated tensors a′α and b′β. The above
expression indicates that Lαβaαbβ is the sum of the bilinear invariants of aα and bβ under rotation. The
only bilinear invariant of vectors is the dot product, aαbα. This implies that Lαβ = Lδαβ. Explicitly,
with respect to the rotations,

LδµνRµαaαRνβbβ = LRµαRµβaαbβ = Lδαβaαbβ = Laαbα, (1.67)

where we have used the property of an orthogonal transformation,

RγαRγβ = δαβ. (1.68)

Given this is the case for all second order tensors,

Lvsαβůαβ = Lvsδαβůαβ = 0, (1.69)

and Lrksαβ ůαβ = Lrksδαβůαβ = 0, (1.70)

since ůαβ is traceless and symmetric. Furthermore, since σ̊αβ is also symmetric and traceless,

Lsvαβ∂γvγ = Lsvδαβ∂γvγ and Lsrkαβ ∂γvγ = Lsrkδαβ∂γvγ (1.71)

imply that Lsv = Lsrk = 0. The remaining second order tensors are

L
fifj
αβ = Lfifjδαβ. (1.72)

Note also that because Lαβ = Lδαβ, Lαβ contracted with any traceless tensor is zero.

Tensors of order 3. Although we already showed them both to be zero as a result of invariance under
parity inversion, for instructive purposes, we consider third order tensors under arbitrary rotation. We
take a similar strategy as for second order tensors.

RLαβγ = RµαRνβRργLµνρ = Lαβγ (1.73)

We multiply both sides by arbitrary vector aα and arbitrary tensor Bβγ .

RµαRνβRργLµνρaαBβγ = LαβγaαBβγ ⇒ Lαβγa
′
αB
′
βγ = LαβγaαBβγ , (1.74)

which must be equal to the sum of the third degree invariants under rotation of aα and Bβγ . The only
invariant is again a dot product of two vectors, or aαεαβγTβγ . Therefore,

Lαβγ = Lεαβγ . (1.75)

Given this fact,

Lfisαβγ ůβγ = Lfisεαβγ ůβγ = 0, (1.76)

since ůβγ is symmetric. Finally,

Lsfiαβγ∂γµ̄i = Lsfiεαβγ∂γµ̄i, (1.77)
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which is an antisymmetric tensor. It must (when summed with other traceless symmetric tensors) be
a traceless symmetric tensor, σ̊d,s. Therefore, Lsfi = 0, which we already knew from invariance under
parity inversion.

Tensors of order 4. We use the same strategy for a fourth order tensor, our only one being Lssαβγδ.

RLαβγδ = RµαRνβRργRπδLµνρπ = Lαβγδ. (1.78)

Multiplying by arbitrary tensors Aαβ and Bγδ,

RµαRνβRργRπδLµνρπAαβBγδ = LαβγδA
′
αβB

′
γδ = LαβγδAαβBγδ. (1.79)

Again, this expression must be equal to the sum of the fourth degree invariants under rotation.

LαβγδAαβBγδ = LaÅsαβB̊
s
αβ + LbAaαβB

a
αβ + LcAααBββ . (1.80)

Therefore, we have

Lαβγδ = La
(

1

2
(δαδδβγ + δαγδβδ)−

1

3
δαβδγδ

)
+
Lb

2
(δαδδβγ − δαγδβδ) + Lcδαβδγδ. (1.81)

Now, we consider the product of the expansion coefficient with a traceless, symmetric tensor, Åαβ.

LssαβγδÅαβ = La
(

1

2
(δαδδβγ + δαγδβδ)−

1

3
δαβδγδ

)
Åαβ +

Lb

2
(δαδδβγ − δαγδβδ)Åαβ

+ LcδαβδγδÅαβ. (1.82)

Consider the last term,

LcδαβδγδÅαβ = LcδαβÅγγ = 0, (1.83)

since Åαβ is traceless. The second term is

Lb

2
(δαδδβγ − δαγδβδ)Åαβ =

Lb

2
(Åβα − Åαβ) = 0, (1.84)

since Åαβ is symmetric. Thus, we have

LssαβγδÅαβ = La
(

1

2
(δαδδβγ + δαγδβδ)−

1

3
δαβδγδ

)
Åαβ = La

(
1

2
(Åδγ + Åγδ)−

1

3
δγδÅαα

)
= LaÅγδ. (1.85)

Finally, although it does not appear for an isotropic fluid, we consider the product of the expansion
coefficient with an antisymmetric tensor, Aaγδ.

LαβγδA
a
γδ = La

(
1

2
(δαδδβγ + δαγδβδ)−

1

3
δαβδγδ

)
Aaγδ +

Lb

2
(δαδδβγ − δαγδβδ)Aaγδ

+ LcδαβδγδA
a
γδ. (1.86)
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Consider the last term,

LcδαβδγδA
a
γδ = LcδαβA

a
γγ = 0, (1.87)

since Aaαβ is traceless. The first term is

La
(

1

2
(δαδδβγ + δαγδβδ)−

1

3
δαβδγδ

)
Aaγδ = La

(
1

2
(Aaβα +Aaαβ)− 1

3
δαβA

a
γγ

)
= 0, (1.88)

again because Aaαβ is antisymmetric. Finally, the middle term is

Lb

2
(δαδδβγ − δαγδβδ)Aaγδ =

Lb

2
(Aaβα −Aaαβ) = −LbAaαβ. (1.89)

Therefore, for an antisymmetric tensor Aaαβ in a system that exhibits rotational invariance,

LαβγδA
a
γδ = LAaαβ. (1.90)

The result is a traceless, antisymmetric tensor. If this must be equal to a symmetric tensor, L = 0.

1.6.7 Updated expansion of fluxes after application of Curie principle

Renaming La = Lss, we arrive at our updated force/flux relations.

σd
γγ/3 = Lvv∂γvγ −

∑
k

LvrkAk (1.91)

rk = Lrkv∂γvγ −
∑
j

LrkrjAj ∀k (1.92)

ji,α = −
∑
j 6=0

Lfifj∂αµ̄j ∀ 6= i (1.93)

σ̊d,s
αβ = Lssůαβ. (1.94)

1.6.8 The Onsager reciprocal relations

The Onsager reciprocal relations restrict the values of the coefficients. I will not go into detail here,
but see de Groot and Mazur for discussion. They follow from the fact that the positive definiteness of
the entropy production rate and properties of the system with respect to time reversal. In particular,
we note that the positive definiteness of σ requires that each term in its sum (i.e., each tensorial order)
be positive.

The shear viscosity. The easiest relation to see is Lss > 0. We define

Lss = 2η, (1.95)

where η(> 0) is known as the viscosity.

The bulk viscosity. In the absence of chemical reaction, the entropy must remain positive definite,
so Lvv > 0. We define

Lvv ≡ ηv, (1.96)
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known as the bulk viscosity.

The chemical reaction rates. The Onsager relations stipulate that when two forces that have
opposite signatures under time reversal couple, their expansion coefficients are of the same magnitude
and of opposite sign. The ∂γvγ term changes sign under time reversal, but the chemical affinities Ak
do not. Therefore, Lrkv = −Lvrk . There is no stipulation on the sign of Lrkv.

While there is no stipulation on the sign of Lrv, positive definiteness of the entropy production
rate σ requires Lrkrj < 0 and further than Lrkrj = Lrjrk . We will absorb a negative sign into these
coefficients and redefine them, −Lrkrj → Lrkrj .

Diffusion. We now wish to write the last constitutive relation, ji,α = −α∂αµ̄i, in a more useful form,
i.e., as a function of the mole fractions ni as opposed to µ̄i. I will not go through the details, since it
involves some complicated manipulations, but it is possible to make the transformation between Lfifj

and Dij such that

ji,α = −
∑
j 6=0

Lfifj∂αµ̄j =
∑
j 6=0

Dij∂αnj . (1.97)

(See de Groot and Mazur, chapter XI.) The diffusion coefficients Dij are in general functions of all the
intensive parameters of the system. Positive definiteness of the entropy production rate requires Dij

be positive definite, with Dii > 0 and Dij = Dji.

1.6.9 Final constitutive relations

Using the results of the previous sections, we arrive at our final constitutive relations.

σd
γγ/3 = ηv∂γvγ −

∑
k

ζkAk (1.98)

rk = −Lvrk∂γvγ +
∑
j

LrkrjAj ∀k (1.99)

σ̊d
αβ = 2ηůαβ (1.100)

ji,α = −mi

∑
j 6=0

Dij∂αnj , (1.101)

with the stipulations that

ηv, η, L
rr
kk, Dii > 0 ∀k, i, (1.102)

and Dij = Dji and Lrkrj = Lrjrk .

1.7 Dynamical equations

To arrive at the dynamical equations, we first consider conservation of mass. Substitution of the
constitutive relation for the flux (1.101) into the conservation law for each species (1.5) yields

dni
dt

= −ni∂αvα + ∂α
∑
j 6=0

Dij ∂αnj +
∑
k

νkirk. (1.103)
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To write the remaining dynamical equations, we simply need to write the stress tensor.

σαβ = σd
αβ + σe

αβ = σ̊d,s
αβ + δαβσγγ/3− pδαβ = 2ηůαβ +

(
ηv∂γvγ − p−

∑
k

LvrkAk

)
δαβ (1.104)

= η(∂αvβ + ∂βvα) +

((
ηv −

2

3
η

)
∂γvγ − p−

∑
k

LvrkAk

)
δαβ, (1.105)

where momentum and energy conservation, respectively, are

ρ
dvα
dt

= ∂βσαβ (1.106)

ρ
de

dt
= ∂βσαβvα. (1.107)

If we make the assumption that Dij is diagonal with Dii ≡ Di, that Di and η are constants, and
that the fluid is incompressible (∂αvα = 0), we arrive at familiar expressions, the advection-reaction-
diffusion equation and the active Navier-Stokes equations (noting that Lvrk is typically zero, i.e.,
chemical reactions do not exert an active stress).

dni
dt

= Di ∂αni − ni∂αvα +
∑
k

νkirk (1.108)

ρ
dvα
dt

= −∂α

(
p+

∑
k

LvrkAk

)
+ ∂β∂βvα. (1.109)

2 Nematic liquid crystal above Tc using Qαβ

We now derive the dynamical equations for a nematic liquid crystal above the critical temperature.
We neglect temperature gradients and we neglect body forces and external fields. For notational
convenience, in this section we will denote

ȧ ≡ da

dt
(2.1)

2.1 Nematic order parameters

2.1.1 The director

A nematic liquid crystal has associated with it a director, nα, a unit vector (nαnα = 1) that points
along the direction of the local orientation of the molecules in the liquid crystal. The unit vector is
special in that any properties depending on it must be invariant under parity inversion. This is in
contrast to a polar fluid, in which the vector specifying the local orientation, pα, flips sign under parity
inversion.
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2.1.2 The tensorial order parameter

Below the critical temperature, a nematic liquid crystal is uniaxially ordered over long length scales.
Above the critical temperature, the nematic order varies more rapidly through space. We therefore
define a tensorial order parameter by

Qαβ = S

(
nαnβ −

1

3
δαβ

)
, (2.2)

where S indicates the magnitude of the order parameter. The tensor order parameter if traceless and
symmetric. We will derive the dynamics in terms of Qαβ and its derivatives, though we could choose
to do so in terms of nαnβ and nαdnβ/dt, which can be a bit easier (see, e.g., Vertogen and de Jeu,
Thermotropic Liquid Crystals, Fundamentals, chapter 8).

2.2 Mass conservation

All the results derived in section 1.1 hold.

2.3 Linear momentum conservation

All the results derived in section 1.2 hold.

2.4 Angular momentum conservation

The expression given by (1.10) must now be modified to take into account the anisotropy in the fluid.

2.4.1 Total angular momentum density: analogous left hand side of (1.10)

The total angular momentum of the fluid element now has a component due to the rotation of the
anisotropic molecules. Let Ωα be the angular velocity of the rotation and I be the moment of inertia.
Then the rate of change of total angular momentum is

d

dt

∫
V
d3x [ρεαβγxβvγ + IΩα] , (2.3)

and the rate of change of total angular momentum is the material derivative of this expression.

2.4.2 Neglect of the IΩα terms

We compare the size of the two terms on the left hand side of the integral angular momentum balance
(2.8). If a is the molecular size of an anisotropic molecules, the moment of inertia of a single molecules
∼ m1a

2, where m1 is the mass of a single molecule. Then, if there are N molecules per unit volume,
the per volume moment of inertia satisfies

I ∼ Nm1a
2

a3
∼ ρa2, (2.4)

since ρ ∼ Nm1/a
3. Therefore, the second term on the left hand side of (2.8) is

I|Ω| ∼ ρa2|Ω|. (2.5)
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Now, the first term is ρεαβγxβvγ . If U is the characteristic velocity of the fluid flow and L is the
characteristic length scale of the system (L � a, since this is a hydrodynamic theory), the time scale
associated with fluid motion is τ = L/U . Therefore, the first term scale like

ρxv ∼ ρLU ∼ ρL2/τ. (2.6)

Since L � a, the second term associated with internal rotations is negligible provided the frequency
of the rotations |Ω| is not orders of magnitude greater than the characteristic flow frequency, τ−1. We
will ultimately neglect the contributions of IΩα, but we keep them for most of the derivation of the
dynamical equations for reference.

2.4.3 Nematic torque and the molecular field: analogous right hand side of (1.10)

In addition to the surface stress taken into account in the right hand side of (1.10), we also must include
torques related to alignment of the nematic order. Imagine that the nematic order is different from its
equilibrium value. The free energy density of the fluid then changes by ρfd, the so-called distortion
free energy density. We define the molecular field to be the functional derivative of fd,

Hαβ ≡ −
δfd
δQαβ

. (2.7)

With this definition, the per-volume torque is −εαγδHγβQδβ − εαβδHγβQγδ (this is a second order
tensorial analogue of a cross product). We must include this on the right hand side of the angular
momentum balance, giving

d

dt

∫
V
d3x [ρεαβγxβvγ + IΩα] =

∫
dSδεαβγ xβ σγδ −

∫
V
d3xHγβ (εαγδQδβ + εαβδQγδ) . (2.8)

2.4.4 Differential expression of angular momentum conservation

We know from section 1.3 that∫
dSδεαβγxβ σγδ −

d

dt

∫
V
d3x ρεαβγxβvγ =

∫
V
d3x εαβγσγβ. (2.9)

Therefore, the integral expression for conservation of angular momentum (2.8) becomes

d

dt

∫
V
d3x IΩα =

∫
V
d3x [εαβγσγβ −Hγβ (εαγδQδβ + εαβδQγδ)] . (2.10)

Now, we can use the same method as in section 1.3.1 to bring the material derivative under the integral
sign, since the moment of inertia is the weighted sum of masses of particles.

d

dt

∫
V
d3x IΩα =

∫
V
d3x IΩ̇α. (2.11)

Using this relation, and the fact that angular momentum must be conserved for any arbitrary volume
V , we get the differential expression for angular momentum conservation.

IΩ̇α = εαβγσγβ −Hγβ (εαγδQδβ + εαβδQγδ) (2.12)
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2.4.5 The antisymmetric part of the stress tensor

The antisymmetric part of the stress tensor can be computed from (2.12).

σaρν =
1

2
ερναεγβασγβ = −1

2
ερναεαβγσγβ

= −I
2
ερνα Ω̇α −

1

2
(ερναεαγδQδβ + ερναεαβδQγδ)Hγβ. (2.13)

This can be simplified using identities of the Levi-Civita symbol.

σaρν = −I
2
ερνα Ω̇α −

1

2
(HρβQνβ −HνβQρβ +HγρQγν −HγνQγρ) (2.14)

Renaming indices gives

σaαβ = −I
2
εαβγ Ω̇γ −

1

2
(HαγQβγ −HβγQαγ +HγαQγβ −HγβQγα) (2.15)

Since both Hαβ and Qαβ are symmetric, this simplifies to

σaαβ = −I
2
εαβγ Ω̇γ −HαγQβγ +HβγQαγ . (2.16)

2.5 Energy conservation in nematic fluids

2.5.1 Total energy balance

The total energy density e from section 1.4.1 now additionally includes the total internal rotational
energy density.

ρe = ρ
vαvα

2
+ I

ΩαΩα

2
+ ρu. (2.17)

Therefore the total integral energy balance is

d

dt

∫
V
d3x

[
ρ
(vαvα

2
+ u
)

+ I
ΩαΩα

2

]
=

∫
dSγ σαγvα =

∫
V
d3x∂γσαγvα, (2.18)

where we have used the divergence theorem. This must be true for all arbitrary volumes V , so we
arrive at the expression for conservation of energy.

ρ
du

dt
+
ρ

2

dvαvα
dt

+
I

2

dΩαΩα

dt
= ∂βσαβvα, (2.19)

where we have again taken the material derivative under the integral sign.

2.5.2 Expression for internal energy

We know from section 1.4.2 that

ρ

2

dvαvα
dt

= vα∂βσαβ. (2.20)
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Therefore,

ρ
du

dt
= −IΩαΩ̇α + σαβ∂βvα, (2.21)

where we have used σαβ∂βvα = ∂βσαβvα−vα∂βσαβ. Now, multiplication of the conservation of angular
momentum equation (2.12) by Ωα gives

IΩαΩ̇α = εαβγΩασγβ − Ωα (εαγδQδβ + εαβδQγδ)Hγβ. (2.22)

Therefore, we have

ρ
du

dt
= σαβ∂βvα − εαβγΩασγβ + Ωα (εαγδQδβ + εαβδQγδ)Hγβ. (2.23)

2.6 Nematic entropy production rate

We again proceed to write the entropy balance in the form of (1.28) in order to identify the entropy
production rate σ.

2.6.1 Nematic distortion internal energy

The total free energy density, ρf , is given by performing a Legendre transform on the T and ρs
conjugate variables. For a nematic fluid, in contrast to an isotropic fluid, there are contributions to
the free energy coming from energetics associated with the director. We will call this free energy the
distortion free energy density, ρfd. The corresponding distortion internal energy is ρud. By writing the
total differentials of the free energy and internal energy.

d(ρf) = −ρsdT +
∑
i

µidni + dρfd (2.24)

d(ρu) = d(ρs) +
∑
i

µidni + dρud (2.25)

Since ρf and ρu are related by Legendre transform of the T and ρs conjugate pair, dρud = dρfd, from
which it follows that dud = dfd.

We write the distortion free energy as a function Qαβ and ∂γQαβ and expand to first order in Qαβ
and its gradient.

dfd = dud = φαβ dQαβ + παβγ d∂γQαβ, (2.26)

where have have defined

φαβ ≡
∂fd
∂Qαβ

and παβγ ≡
∂fd

∂(∂γQαβ)
. (2.27)

Given the prescribed functional dependence of fd on Qαβ and ∂γQαβ, we may write the molecular
field as the functional derivative of fd with respect to Qαβ.

Hαβ ≡ −
δfd
δQαβ

= −φαβ + ∂γπαβγ . (2.28)
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2.6.2 Nematic Gibbs relation

The Gibbs relation follows from (2.25)

T
dρs

dt
=

dρu

dt
− dud

dt
−
∑
i

µi
dni
dt
. (2.29)

Using (2.26), this is

T
dρs

dt
=

dρu

dt
− φαβ

dQαβ
dt
− παβγ

d

dt
(∂γQαβ)−

∑
i

µi
dni
dt
. (2.30)

To put this in a more convenient form, we note that

d

dt
(∂γQαβ) = (∂t + vδ∂δ)∂γQαβ = ∂γ∂tQαβ + vδ∂γ(∂δQαβ)

= ∂γ∂tQαβ + ∂γvδ∂δQαβ − (∂δQαβ)∂γvδ = ∂γ
dQαβ

dt
− (∂δQαβ)∂γvδ. (2.31)

Thus,

T
dρs

dt
=

dρu

dt
− φαβ Q̇αβ − παβγ

(
∂γ Q̇αβ − (∂δQαβ)∂γvδ

)
−
∑
i

µi ṅi. (2.32)

2.6.3 Identifying σ and jS,α for a nematic fluid

Substitution of the expression for the time rate of change of the internal energy (2.23) into the nematic
Gibbs relation (2.32) and application of simplifications of section 1.5.2 yield

Tρ
ds

dt
=

{
−∂α

(
−
∑
i

µi
ji,α
mi

)
+

[
σαβ +

(
−ρu+ Tρs+

∑
i

µini

)
δαβ

]
∂βvα

}

− εαβγΩασγβ + Ωα (εαγδQδβ + εαβδQγδ)Hγβ − φαβQ̇αβ − παβγ
(
∂γQ̇αβ − (∂δQαβ)∂γvδ

)
−

{∑
i

(
ji,α
mi

∂αµi + µi
∑
k

νkirk

)}
, (2.33)

where the terms in braces appear for an isotropic fluid. We now apply the chain rule to rewrite

παβγ∂γQ̇αβ = ∂γπαβγQ̇αβ − Q̇αβ∂γπαβγ . (2.34)

Using this relation and relabeling some indices, we get

Tρ
ds

dt
=− ∂γ

(
−
∑
i

µi
ji,γ
mi

+ παβγQ̇αβ

)
+ (σαβ + pδαβ + πγδβ∂αQγδ) ∂βvα

− εαβγΩασγβ + Ωα (εαγδQδβ + εαβδQγδ)Hγβ + [∂γπαβγ − φαβ]Q̇αβ

−
∑
i

(
ji,α
mi

∂αµi + µi
∑
k

νkirk

)
, (2.35)
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where the bracketed expression is the molecular field Hαβ and we have again identified

p = −ρu+ Tρs+
∑
i

µini. (2.36)

We can now identify

Tjs,α = −
∑
i

µi
ji,γ
mi

+ παβγQ̇αβ (2.37)

and

Tσ = (σαβ + pδαβ + πγδβ∂αQγδ) ∂βvα − εαβγΩασγβ + Ωα (εαγδQδβ + εαβδQγδ)Hγβ

+HαβQ̇αβ −
∑
i

(
ji,α
mi

∂αµi + µi
∑
k

νkirk

)
. (2.38)

2.6.4 Consolidating the material flux terms

We again consolidate the material flux terms as in section 1.5.3. We additionally simplify the terms
involving Ωα.

Tσ = (σαβ + pδαβ + πγδβ∂αQγδ) ∂βvα − Ωα (εαβγσγβ − (εαγδQδβ + εαβδQγδ)Hγβ)

+HαβQ̇αβ −
∑
i 6=0

ji,α ∂αµ̄i −
∑
k

rkAk, (2.39)

where we have again defined the affinity Ak.

2.6.5 Reversible terms and the nematic Ericksen stress

We identify the portions of the stress and nematic ordering interactions that are reversible, i.e., those
that do not contribute to the production of entropy, as those for which σ = 0, even when ∂βvα, Ωα,
and Q̇αβ are all nonzero. The first identifies the Ericksen stress for a nematic liquid crystal.

σe
αβ = −pδαβ − πγδβ∂αQγδ, (2.40)

with the deviatoric stress again being σd
αβ = σαβ − σe

αβ. Note that both terms in the Ericksen stress
are symmetric, and we can write it as

σe
αβ = −pδαβ − πγδα∂βQγδ, (2.41)

The second relation defining a reversible process comes from the Ωα term.

εαβγσ
(r)
γβ = (εαγδQδβ + εαβδQγδ)Hγβ, (2.42)

which describes the antisymmetric part of the reversible stress. This can be re-written by multiplying
both sides by εαβγ and contracting, using identities of the Levi-Citiva symbol.

σ
(r)
αβ =

1

3
(HγβQγα −HαγQβγ) . (2.43)
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2.6.6 Splitting the stress tensor

We split the tensors σd
αβ and ∂βvα into their trace, antisymmetric, and traceless and symmetric parts.

Note that Q̇αβ is traceless and symmetric and Hαβ is symmetric. Doing this gives the entropy produc-
tion rate

Tσ = σ̊d,s
αβ ůαβ − σ

d,a
αβ ωαβ + σd

αα∂γvγ/3− Ωα (εαβγσγβ − (εαγδQδβ + εαβδQγδ)Hγβ)

+ H̊αβQ̇αβ −
∑
i 6=0

ji,α ∂αµ̄i −
∑
k

rkAk. (2.44)

2.6.7 Incorporating the antisymmetric part of the stress tensor

Because the Ericksen stress is symmetric, the antisymmetric part of the stress tensor appears exclusively
in the deviatoric stress, i.e.,

σd,a
αβ = −I

2
εαβγ Ω̇γ −HαγQβγ +HβγQαγ . (2.45)

Therefore,

−σd,a
αβ ωαβ =

I

2
εαβγ Ω̇γωαβ + (HαγQβγ −HβγQαγ)ωαβ

=
I

2
εαβγ Ω̇γωαβ +Hαβ(Qγβωαγ +Qγαωβγ), (2.46)

where we have relabeled indices and taken advantage of the symmetry of Hαβ and the antisymmetry
of ωαβ. Defining the co-moving, co-rotational derivative of Qαβ as

DQαβ
Dt

≡
dQαβ

dt
+Qγβωαγ +Qγαωβγ , (2.47)

we can write the entropy production rate as

Tσ = σ̊d,s
αβ ůαβ + σd

αα∂γvγ/3 +
I

2
εαβγ Ω̇γωαβ − Ωα (εαβγσγβ − (εαγδQδβ + εαβδQγδ)Hγβ)

+ H̊αβ
DQαβ
Dt

−
∑
i 6=0

ji,α ∂αµ̄i −
∑
k

rkAk. (2.48)

Note that DQαβ/Dt is traceless and symmetric.

2.6.8 The axial vector Ωα as a second order antisymmetric tensor

An axial vector may be written as an antisymmetric second order tensor. We therefore define

Ωαβ = εαβγΩγ . (2.49)

Using this fact and symmetry properties of second order tensors, the entropy production rate is, after
relabeling indices,

Tσ = σ̊d,s
αβ ůαβ + σd

αα∂γvγ/3 +
I

2
Ω̇αβωαβ + [Ωαβ(σαβ −HγβQγα +HαγQβγ)]
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+ H̊αβ
DQαβ
Dt

−
∑
i 6=0

ji,α ∂αµ̄i −
∑
k

rkAk. (2.50)

Since Ωαβ is antisymmetric, as is the sum HαγQβγ −HγβQγα only the antisymmetric part of the stress
tensor may contribute to the entropy production rate in the bracketed term. Using the expression for
the antisymmetric part of the stress tensor (2.16), we get, for the bracketed term

Ωαβ(σαβ −HγβQγα +HαγQβγ) = −IΩαβΩ̇αβ/2 (2.51)

Therefore, the entropy production rate is

Tσ = σ̊d,s
αβ ůαβ + σd

αα∂γvγ/3 +
I

2
Ω̇αβ(ωαβ − Ωαβ) + H̊αβ

DQαβ
Dt

−
∑
i 6=0

ji,α ∂αµ̄i −
∑
k

rkAk. (2.52)

2.7 Constitutive relations

2.7.1 Identification of fluxes and forces

Using our expression for the entropy production rate, we identify the thermodynamic fluxes and forces,
identifying the molecular field as a force.

flux force character

σdγγ/3 ∂γvγ scalar

rk −Ak scalar (∀k)

ji,α −∂αµ̄i polar vector (∀i 6= 0)

σ̊d,sαβ ůαβ symmetric, traceless tensor

DQαβ/Dt H̊αβ symmetric, traceless tensor

IΩ̇αβ/2 ωαβ − Ωαβ antisymmetric tensor

2.7.2 Expansion of fluxes

We carry out the expansions of the fluxes to linear order in the forces. With nematic order, the tensors
are still invariant to parity inversion. This means, again, that all tensors of odd order are zero. Using
this fact, the most general expansion is

σd
γγ/3 = Lvv∂γvγ −

∑
k

LvrkAk + Lvsαβůαβ + LvqαβH̊αβ + Lvaαβ(ωαβ − Ωαβ). (2.53)

rk = Lrkv∂γvγ −
∑
j

LrkrjAj + Lrksαβ ůαβ + Lrkqαβ H̊αβ + Lrkaαβ (ωαβ − Ωαβ). ∀k (2.54)

ji,α = −
∑
j 6=0

L
fifj
αβ ∂βµ̄j ∀i 6= 0 (2.55)

σ̊d,s
αβ = Lsvαβ∂γvγ −

∑
k

Lsrkαβ Ak + Lssαβγδůγδ + LsqαβγδH̊γδ + Lsaαβγδ(ωγδ − Ωγδ). (2.56)
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DQαβ
Dt

= Lqvαβ∂γvγ −
∑
k

Lqrkαβ Ak + Lqsαβγδůγδ + LqqαβγδH̊γδ + Lqaαβγδ(ωγδ − Ωγδ). (2.57)

IΩ̇αβ/2 = Lavαβ∂γvγ −
∑
k

Larkαβ Ak + Lasαβγδůγδ + LaqαβγδH̊γδ + Laaαβγδ(ωγδ − Ωγδ). (2.58)

I have called the expansion coefficients L and labeled the expansion coefficients with a superscript to
designate what thermodynamic forces they couple. The code is given below.

superscript thermodynamic force description of thermodynamic flux

v ∂γvγ compressive stress
rk −Ak rate of chemical reaction k
fi −∂αµ̄i diffusive flux of species i
s ůαβ shear stress

q H̊αβ order parameter alignment
a ωαβ − Ωαβ rotational stress

The subscripts of the expansion coefficients L indicate their tensorial order.

2.7.3 Rotational invariance: application of the Curie principle

The system must have the same symmetry properties as the order parameter. In general the expan-
sion coefficients (the Ls), are functions of the intensive thermodynamic variables, including the order
parameter Qαβ. Therefore, the zeroth order L tensors may be written as expansions of Qαβ,

L = L0 + L2QαβQαβ + . . . , (2.59)

where the first order term vanishes because Qαα = 0. Similarly, the second order tensors may be
expanded as

Lαβ = L0δαβ + L1Qαβ + L2QαγQγβ + . . . , (2.60)

where we have taken the zeroth order term to be that appearing in the absense of nematic order.
Likewise for fourth order tensors,

Lαβγδ =La0

(
1

2
(δαδδβγ + δαγδβδ)−

1

3
δαβδγδ

)
+
Lb0
2

(δαδδβγ − δαγδβδ) + Lc0δαβδγδ

+ La1Qβδδαγ + Lb1Qβγδαδ + Lc1Qαγδβδ + Ld1Qαδδβγ + Le1Qγδδαβ + Lf1Qαβδγδ

+ L2QαβQγδ + . . . . (2.61)

There are six terms that are first order in Qαβ, since Qαβ and δαβ are symmetric. If they were not,
there would be 24 terms, e.g., Qαβδγδ = Qαβδδγ = Qβαδγδ = Qβαδδγ .

Going forward, we will only consider terms up to first order in Qαβ and use the above relations for
the expansion coefficients, (the Ls).

Compressive stress. We now consider the constitutive relation for the compressive stress, σd
γγ . Using

the above relations,

Lvsαβ = Lvs0 δαβ + LvsQαβ, Lvqαβ = Lvq0 δαβ + LvqQαβ, and Lvaαβ = Lva0 δαβ + Lva1 Qαβ. (2.62)
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Therefore, we have

Lvaαβ(ωαβ − Ωαβ) = 0, (2.63)

due to the symmetry (to first order in the order parameter) of Lvaαβ and the antisymmetry of ωαβ and

Ωαβ. Due to the tracelessness of ůαβ and H̊αβ,

Lvsαβůαβ = LvsQαβůαβ, (2.64)

LvsαβH̊αβ = LvqQαβH̊αβ. (2.65)

Thus, we have

σd
γγ/3 = Lvv∂γvγ −

∑
k

LvrkAk + LvsQαβůαβ + LvqQαβH̊αβ. (2.66)

Chemical reaction rates. We now consider the constitutive relations for the chemical reaction rates.
As scalar quantities, their constitutive relations are similar to the compressive stress.

rk = Lrkv∂γvγ −
∑
j

LrkrjAj + LrksQαβůαβ + LrkqQαβH̊αβ ∀k. (2.67)

Chemical fluxes. The chemical fluxes, to first order in Qαβ are

ji,α = −
∑
j 6=0

(
L
fifj
0 ∂αµ̄j + L

fifj
1 Qαβ∂βµ̄j

)
∀i. (2.68)

Shear stress. We now consider the shear stress to first order in Qαβ. Recall

σ̊d,s
αβ = Lsvαβ∂γvγ −

∑
k

Lsrkαβ Ak + Lssαβγδůγδ + LsqαβγδH̊γδ + Lsaαβγδ(ωγδ − Ωγδ). (2.69)

We first consider

Lsvαβ∂γvγ = (Lsv0 δαβ + Lsv1 Qαβ) ∂γvγ . (2.70)

Because σ̊d,s
αβ is traceless, Lsv0 = 0. Similar arguments hold for Lsrkαβ Ak. Next, consider

Lssαβγδůγδ =

(
Lss,a0

(
1

2
(δαδδβγ + δαγδβδ)−

1

3
δαβδγδ

)
+
Lss,b0

2
(δαδδβγ − δαγδβδ) + Lss,c0 δαβδγδ

)
ůγδ

+
(
Lss,a1 Qβδδαγ + Lss,b1 Qβγδαδ + Lss,c1 Qαγδβδ + Lss,d1 Qαδδβγ + Lss,e1 Qγδδαβ + Lss,f1 Qαβδγδ

)
ůγδ. (2.71)

By the same arguments as in section 1.6.6, the first term is Lss,a0 ůαβ. We now consider the remaining
terms.

Lss,a1 Qβδδαγ ůγδ = Lss,a1 Qβδůαδ = Lss,a1 Qβγ ůγα (2.72)

Lss,b1 Qβγδαδůγδ = Lss,b1 Qβγ ůγα (2.73)

Lss,c1 Qαγδβδůγα = Lss,c1 Qαγ ůγβ (2.74)
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Lss,d1 Qαδδβγ ůγδ = Lss,d1 Qαδůβδ = Lss,d1 Qαγ ůγβ (2.75)

Lss,e1 Qγδδαβůγδ = Lss,e1 (Qγδůγδ)δαβ (2.76)

Lss,f1 Qαβδγδůγδ = Lss,f1 Qαβůδδ = 0. (2.77)

Therefore, we have

Lssαβγδůγδ = Lss,a0 ůαβ +
(
Lss,a1 + Lss,b1

)
Qβγ ůγα +

(
Lss,c1 + Lss,d1

)
Qαγ ůγβ + Lss,e1 (Qγδůγδ)δαβ. (2.78)

In order for σ̊d,s
αβ to be traceless and symmetric, Lss,a1 = Lss,b1 = Lss,c1 = Lss,d1 ≡ Lss1 /4, and Lss,e1 =

−Lss1 /3. Therefore,

Lssαβγδůγδ = Lss0 ůαβ + Lss1

(
1

2
(Qβγ ůγα +Qαγ ůγβ)− 1

3
(Qγδůδγ)δαβ

)
. (2.79)

Similar arguments apply for the LsqαβγδH̊γδ term.

Lsqαβγδůγδ = Lsq0 H̊αβ + Lsq1

(
1

2
(QβγH̊γα +QαγH̊γβ)− 1

3
(QγδH̊δγ)δαβ

)
. (2.80)

For the Lsaαβγδ(ωαβ −Ωαβ) term, the first term vanishes, again by the same arguments as in section
1.6.6. Defining Aaαβ = ωαβ − Ωαβ for notational convenience, he latter terms linear in the order
parameter are

Lsa,a1 QβδδαγA
a
γδ = Lsa,a1 QβδA

a
αδ = Lsa,a1 QβγA

a
γα (2.81)

Lsa,b1 QβγδαδA
a
γδ = Lsa,b1 QβγA

a
γα (2.82)

Lsa,c1 QαγδβδA
a
γα = Lsa,c1 QαγA

a
γβ (2.83)

Lsa,d1 QαδδβγA
a
γδ = Lsa,d1 QαδA

a
βδ = Lsa,d1 QαγA

a
γβ (2.84)

Lsa,e1 QγδδαβA
a
γδ = Lsa,e1 (QγδA

a
γδ)δαβ = 0 (2.85)

Lsa,f1 QαβδγδA
a
γδ = Lsa,f1 QαβA

a
δδ = 0. (2.86)

Thus, we have

LsaαβγδA
a
γδ =

(
Lsa,a1 + Lsa,b1

)
QβγA

a
γα +

(
Lsa,c1 + Lsa,d1

)
QαγA

a
γβ. (2.87)

In order for σ̊αβ to be symmetric (tracelessness is automatically satisfied), Lsa,a1 = Lsa,b1 = −Lsa,c1 =

−Lsa,d1 ≡ Lsa/4. Therefore, we have, to first order in Qαβ,

σ̊d,s
αβ =LsvQαβ∂γvγ −

∑
k

LsrkQαβAk + Lss0 ůαβ + Lss1

(
1

2
(Qβγ ůγα +Qαγ ůγβ)− 1

3
(Qγδůδγ)δαβ

)

+ Lsq0 H̊αβ + Lsq1

(
1

2
(QβγH̊γα +QαγH̊γβ)− 1

3
(QγδH̊δγ)δαβ

)
+ Lsa (Qαγ(ωγβ − Ωγβ)−Qβγ(ωγα − Ωγα)) . (2.88)
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Order parameter alignment. The analysis for order parameter alignment proceeds exactly as for
the shear stress.

DQαβ
Dt

=LqvQαβ∂γvγ −
∑
k

LqrkQαβAk + Lqs0 ůαβ + Lqs1

(
1

2
(Qβγ ůγα +Qαγ ůγβ)− 1

3
(Qγδůδγ)δαβ

)

+ Lqq0 H̊αβ + Lqq1

(
1

2
(QβγH̊γα +QαγH̊γβ)− 1

3
(QγδH̊δγ)δαβ

)
+ Lqa (Qαγ(ωγβ − Ωγβ)−Qβγ(ωγα − Ωγα)) . (2.89)

Rotational stress. The rate of change rotational stress is an antisymmetric tensor. Recall,

IΩ̇αβ/2 = Lavαβ∂γvγ −
∑
k

Larkαβ Ak + Lasαβγδůγδ + LaqαβγδH̊γδ + Laaαβγδ(ωγδ − Ωγδ). (2.90)

Since Lavαβ = Lav0 δαβ +Lav1 Qαβ is a symmetric tensor, Lavαβ∂γvγ = 0. A similar argument holds for Larkαβ .

We now consider

Lasαβγδůγδ =

(
Las,a0

(
1

2
(δαδδβγ + δαγδβδ)−

1

3
δαβδγδ

)
+
Las,b0

2
(δαδδβγ − δαγδβδ) + Las,c0 δαβδγδ

)
ůγδ

+
(
Las,a1 Qβδδαγ + Las,b1 Qβγδαδ + Las,c1 Qαγδβδ + Las,d1 Qαδδβγ + Las,e1 Qγδδαβ + Las,f1 Qαβδγδ

)
ůγδ. (2.91)

By the same arguments of section 1.6.6, the term that is zero order in Qαβ vanishes. Using the results
from our analysis of the shear stress, we have

Lasαβγδůγδ =
(
Las,a1 + Las,b1

)
Qβγ ůγα +

(
Las,c1 + Las,d1

)
Qαγ ůγβ + Las,e1 (Qγδůγδ)δαβ. (2.92)

In order for this to equal an antisymmetric tensor, Las,a1 = Las,b1 = −Las,c1 = −Las,d1 ≡ −Las1 /4, and
Las,e1 = 0. Thus, we have

Lasαβγδůγδ =
Las1

2
(Qβγ ůγα −Qαγ ůγβ). (2.93)

Similarly,

LasαβγδH̊γδ =
Laq1

2
(QβγH̊γα −QαγH̊γβ). (2.94)

Finally,

LaaαβγδA
a
γδ =

(
Laa,a1 + Laa,b1

)
QβγA

a
γα +

(
Laa,c1 + Laa,d1

)
QαγA

a
γβ + Laa,e1 (QγδA

a
γδ)δαβ. (2.95)

For this to equal an antisymmetric tensor, Laa,a1 = Laa,b1 = Laa,c1 = Laa,d1 ≡ Laa1 /4. Note that QγδA
a
γδ =

0. Therefore, we have

IΩ̇αβ/2 =
Las1

2
(Qβγ ůγα −Qαγ ůγβ) +

Laq1

2
(QβγH̊γα −QαγH̊γβ)

+
Laa1

2
(Qβγ(ωγα − Ωγα) +Qαγ(ωγβ − Ωγβ)) . (2.96)

27



Updated consitutive relations. The updated constitutive relations are

σd
γγ/3 =Lvv∂γvγ −

∑
k

LvrkAk + LvsQαβůαβ + LvqQαβH̊αβ (2.97)

rk =Lrkv∂γvγ −
∑
j

LrkrjAj + LrksQαβůαβ + LrkqQαβH̊αβ ∀k (2.98)

ji,α = −
∑
j 6=0

(
L
fifj
0 ∂αµ̄j + L

fifj
1 Qαβ∂βµ̄j

)
∀i (2.99)

σ̊d,s
αβ =LsvQαβ∂γvγ −

∑
k

LsrkQαβAk + Lss0 ůαβ + Lss1

(
1

2
(Qβγ ůγα +Qαγ ůγβ)− 1

3
(Qγδůδγ)δαβ

)

+ Lsq0 H̊αβ + Lsq1

(
1

2
(QβγH̊γα +QαγH̊γβ)− 1

3
(QγδH̊δγ)δαβ

)
+ Lsa (Qαγ(ωγβ − Ωγβ)−Qβγ(ωγα − Ωγα)) (2.100)

DQαβ
Dt

=LqvQαβ∂γvγ −
∑
k

LqrkQαβAk + Lqs0 ůαβ + Lqs1

(
1

2
(Qβγ ůγα +Qαγ ůγβ)− 1

3
(Qγδůδγ)δαβ

)

+ Lqq0 H̊αβ + Lqq1

(
1

2
(QβγH̊γα +QαγH̊γβ)− 1

3
(QγδH̊δγ)δαβ

)
+ Lqa (Qαγ(ωγβ − Ωγβ)−Qβγ(ωγα − Ωγα)) (2.101)

IΩ̇αβ/2 =
Las1

2
(Qβγ ůγα −Qαγ ůγβ) +

Laq1

2
(QβγH̊γα −QαγH̊γβ)

+
Laa1

2
(Qβγ(ωγα − Ωγα) +Qαγ(ωγβ − Ωγβ)) . (2.102)

2.7.4 Onsager relations

The Onsager relations stipulate

Lvrk = −Lrkv ∀k (2.103)

Lvs = Lsv (2.104)

Lvq = −Lqv (2.105)

Lrks = −Lsrk ∀k (2.106)

Lrkq = Lqrk ∀k (2.107)

L
fifj
0 = L

fjfi
0 ∀i, j (2.108)

Lsq0 = −Lqs0 (2.109)

Lsq1 = −Lqs1 (2.110)
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Lsa = Las. (2.111)

Furthermore,

Ljj > 0 ∀j ∈ {v, rk, fi, s, q, a}. (2.112)

2.7.5 Simplification of constitutive relations: neglect of internal inertia and Qαβ-dependence
of viscosity

We now make a few simplifying assumptions. First, we neglect the internal rotation, as described in
section 2.4.2. This means that all terms involving ωαβ − Ωαβ are ignored. Secondly, we assume that
the viscosities are independent of the order parameter (as suggested by Olmsted and Goldbart, PRA,
1990). This means that all fourth order tensors are expanded only to zeroth order in Qαβ. Finally, we
now make the following definitions.

ηv ≡ Lvv, η ≡ Lss0 /2, β1 ≡ −Lsq0 , β2 ≡ 1/Lqq0 . (2.113)

We then get the following constitutive relations, also applying the Onsager relations.

σd
γγ/3 = ηv∂γvγ +

∑
k

LrkvAk (2.114)

rk = Lrkv∂γvγ −
∑
j

LrkrjAj + LrksQαβůαβ + LrkqQαβH̊αβ ∀k (2.115)

ji,α = −
∑
j 6=0

(
L
fifj
0 ∂αµ̄j + L

fifj
1 Qαβ∂βµ̄j

)
∀i (2.116)

σ̊d,s
αβ =

∑
k

LrksQαβAk + 2ηůαβ − β1H̊αβ (2.117)

DQαβ
Dt

= LrkqQαβAk + β1ůαβ + β−1
2 H̊αβ. (2.118)

2.7.6 Further simplification of constitutive relations: neglect of anisotropic diffusion

We should treat the diffusion as anisotropic, with non-vanishing L
fifj
1 . We defer this until later, and

for now assume diffusion is isotropic. We can again define a diffusivity tensor and write

ji,α = −mi

∑
j 6=0

Dij∂αnj . (2.119)

2.8 Nematic dynamical equations

The dynamical equations are given by

dni
dt

= −ni∂αvα + ∂α
∑
j 6=0

Dij ∂αnj +
∑
k

νkirk (2.120)

ρ
dvα
dt

= ∂βσαβ (2.121)
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DQαβ
Dt

= LrkqQαβAk + β1ůαβ + β−1
2 H̊αβ, (2.122)

where the latter is simply a constitutive relation.

2.8.1 The total stress tensor

The total stress tensor is

σαβ = σd
αβ + σe

αβ = σ̊d,s
αβ +

1

3
σd
γγδαβ + σd,a

αβ + σe
αβ. (2.123)

We use the above constitutive relations for σ̊d,s
αβ and σd

γγ , (2.16) for σd,a
αβ , and (2.41) for the σe

αβ.
Therefore, the total stress tensor is

σαβ = 2ηůαβ + ηv∂γvγδαβ

− β1H̊αβ

+
∑
k

LrksQαβAk +
∑
k

LrkvAkδαβ

−HαγQβγ +HβγQαγ

− pδαβ − πγδα∂βQγδ. (2.124)

The first line is the isotropic deviatoric stress, the second is the stress due to alignment with the
molecular field, the third is the active stress (due to chemical reactions), the fourth is the antisymmetric
part of the deviatoric stress, and the last line is the reversible (Ericksen) stress.

2.8.2 Simplification of the total stress: neglect of second order terms in Hαβ and Qαβ

The total stress tensor is further simplified if we neglect terms that are above first order in the molecular
field and order parameter. In this case, the stress tensor is symmetric.

σαβ = 2ηůαβ + ηv∂γvγδαβ − β1H̊αβ +
∑
k

LrksQαβAk +
∑
k

LrkvAkδαβ − pδαβ. (2.125)

2.8.3 Further simplification of the total stress: equality of viscosities

We make a further approximation that ηv = η. Then, we have

σαβ = 2ηuαβ − β1H̊αβ +
∑
k

LrksQαβAk +
∑
k

LrkvAkδαβ − pδαβ, (2.126)

where uαβ ≡ (∂αvβ + ∂βvα)/2 is the symmetric part of the velocity gradient tensor.

2.8.4 Special case: fast ATP consumption, mass action kinetics, incompressible fluid,
diagonal diffusivity tensor

We now consider the special case where ATP is in abundance and diffuses infinitely quickly. In this
case, the affinity for the hydrolysis of ATP,

ATP→ ADP + Pi, (2.127)
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which we will call reaction 0, is

A0 = µADP + µPi − µATP ≡ ∆µ, (2.128)

which is constant. We define Lr0s = ζ, Lrov = ζ̄, and Lr0q = λ. We assume that no other chemical
reactions contribute to the stress of alignment of the order parameter, or Lrks = Lrkq = 0 ∀k 6= 0.
Thus, the stress tensor is

σαβ = 2ηuαβ − β1H̊αβ + ζ∆µQαβ + (ζ̄∆µ− p)δαβ. (2.129)

The order parameter is governed by

DQαβ
Dt

= β1ůαβ + β−1
2 H̊αβ + λ∆µQαβ. (2.130)

If we further assume that the chemical reaction rates (with the exception of ATP hydrolysis), are
governed by mass action kinetics, i.e.,

rk ≈
∏

i for which νki<0

kkin
−νki
i . (2.131)

This means that the terms containing to the chemical affinities in the constitutive relation for rk
dominate the other terms in the sum. Further, is we assume the diffusivity tensor is diagonal, we have

dni
dt

= −ni∂αvα +Di∂α∂αni +
∑
k

νki
∏

i for which νki<0

kkin
−νki
i . (2.132)

If we further assume that the fluid is incompressible (∂γvγ = 0 and uαβ = ůαβ), we get

σαβ = 2ηuαβ − β1H̊αβ − ζ∆µQαβ − pδαβ (2.133)

DQαβ
Dt

= β1uαβ + β−1
2 H̊αβ + λ∆µQαβ. (2.134)

The ζ̄∆µ term vanished because if appears as an expansion of the diagonal portion of the deviatoric
stress, which is zero for an incompressible fluid. We can write the stress in terms of DQαβ/Dt by
eliminating the molecular field.

σαβ =
(
2η + β2

1β2

)
uαβ − pδαβ + ζ ′∆µQαβ − β1β2

DQαβ
Dt

, (2.135)

where ζ ′ ≡ ζ + β1β2λ.

2.8.5 The Landau-de Gennes expansion

We can write the distortion energy as a Landau-de Gennes expansion. Formally, we may write the
distortion energy as a function of the order parameter, Qαβ. The coefficients of the expansion are in
general tensorial, so most generally,

fd = AαβγδQαβQγδ +BαβγδµνQαβQγδQγδQµν + . . . , (2.136)
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where we have not included the dependence of the distortion free energy on the derivatives of the order
parameter. Considering symmetry properties of a uniaxial nematic (which I will not go into here), the
Landau-de Gennes expansion to second order in the order parameter and its derivative is

fd =
χ

2
QαβQαβ +

L1

2
(∂γQαβ)(∂γQαβ) +

L2

2
(∂αQαγ)(∂βQγβ). (2.137)

The first order terms are all zero, because of the scalar nature of fd. It can be shown that to second
order in S (see Vertogen and de Jeu, page 232), that L1 and L2 are related to the Frank elastic
constants, K1, K2, and K3, by

K1 = K3 = 2 (L1 + L2/2)S2 (2.138)

K2 = 2L1S
2, (2.139)

where truncation of the Landau-de Gennes expansion necessitates that K1 = K3 (inclusion of further
terms would result in K1 6= K3). If we make the one constant approximation that K1 = K2 = K3,
then L2 = 0, and we define L ≡ L1. Therefore, we have a distortion energy of

fd =
χ

2
QαβQαβ +

L

2
(∂γQαβ)(∂γQαβ). (2.140)

2.8.6 The molecular field as determined by the Landau-de Gennes expansion

We can use the distortion energy to compute the molecular field.

Hαβ = − δfd
δQαβ

= −χQαβ + L∂γ∂γQαβ. (2.141)

With this in place, we can get an expression for DQαβ/Dt.

DQαβ
Dt

= β1uαβ − β−1
2

(
χ′Qαβ − L∂γ∂γQαβ

)
, (2.142)

where χ′ ≡ χ − β2λ∆µ. Keep in mind that with this definition, terms containing χ′ result from both
active and passive processes.

Substitution of (2.142) into (2.135) yields

σαβ = 2ηuαβ − pδαβ +
(
ζ ′∆µ+ β1χ

′ − β1L∂γ∂γ
)
Qαβ. (2.143)

2.9 A thin sheet of active nematic liquid crystal

We now consider a thin sheet of active nematic liquid crystal. We stipulate the the filaments are aligned
in the xy-plane, meaning Qxz = Qyz = 0 and Qzz = −1/3. We define the equilibrium state of the liquid
crystal to be disordered in the plane, naturally absent of flow and active processes. The equilibrium
order parameter is then given by

Q0
xx = Q0

yy =
1

6
, Q0

zz = −1

3
, (2.144)

with the other entries being zero. We define Q′αβ as the deviation from the equilibrium configuration,

Qαβ = Q0
αβ +Q′αβ. (2.145)
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Q′αβ is uniquely defined by Q′xx = −Q′yy ≡ Q̃ and Q′xy = Q′yx ≡ q, with all other entries being zero.

In addition the thinness of the sheet affects the scale of the fluid velocities in the respective direc-
tions. The sheet is thin in the z direction, say with thickness h, compared to the x and y directions,
say with extent `. If characteristic velocity in the x and y directions is U , then the continuity equation,
∂γvγ = 0, specifies that the characteristic velocity in the z-direction, Uz is

Uz ∼
h

`
U. (2.146)

I.e., Uz � U since h� `.

2.9.1 The Landau-de Gennes expansion under the thin sheet constraint

Given the thin sheet constraint and that the equilibrium value of the order parameter is Q0
αβ, the

Landau-de Gennes expansion of the distortion free energy is

fd =
χ

2
Q′αβQ

′
αβ +

L

2
(∂γQ

′
αβ)(∂γQ

′
αβ). (2.147)

The resulting molecular field is

Hαβ = − δfd
δQ′αβ

= −χQ′αβ + L∂γ∂γQ
′
αβ. (2.148)

2.9.2 Expression for DQαβ/Dt under thin sheet constraint

Using the expression for the molecular field in the thin sheet,

DQxx
Dt

=
DQ′xx
Dt

= β1uxx − β−1
2

(
χQ′xx − L∂γ∂γQ′xx

)
+ λ∆µ(Q0

xx +Q′xx)

= β1uxx − β−1
2

(
χ′ − L∂γ∂γ

)
Q′xx + λ∆µQ0

xx, (2.149)

and similarly,

DQyy
Dt

= −DQ
′
xx

Dt
= β1uyy − β−1

2

(
χQ′yy − L∂γ∂γQ′yy

)
+ λ∆µ(Q0

yy +Q′yy)

= β1uyy + β−1
2

(
χ′ − L∂γ∂γ

)
Q′xx − λ∆µQ0

xx, (2.150)

where we have used the fact that Q′xx = −Q′yy. Subtracting the two equations gives

DQ′xx
Dt

−
DQ′yy
Dt

= 2
DQ̃

Dt
= β1(uxx − uyy)− 2β−1

2

(
χ′ − L∂γ∂γ

)
Q̃. (2.151)

Thus, we have

DQ̃

Dt
=
β1

2
(uxx − uyy)− β−1

2

(
χ′ − L(∂2

x + ∂2
y)
)
Q̃. (2.152)

Finally, we can trivially compute

DQ′xy
Dt

=
Dq

Dt
= β1uxy − β−1

2

(
χ′ − L(∂2

x + ∂2
y)
)
q. (2.153)
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Note that

DQ̃

Dt
= ∂tQ̃+ vγ∂γQ̃+ q(∂xvy − ∂yvx) (2.154)

Dq

Dt
= ∂tq + vγ∂γq − Q̃(∂xvy − ∂yvx). (2.155)

2.9.3 The stress tensor for a thin film

The stress tensor for the thin film is

σαβ = 2ηuαβ − pδαβ + ζ ′∆µ(Q0
αβ +Q′αβ) +

[
β2

1β2uαβ − β1β2
DQαβ
Dt

]
. (2.156)

We now compute the bracketed term. Note that

DQxz
Dt

=
DQzx
Dt

=
DQyz
Dt

=
DQzy
Dt

=
DQzz
Dt

= 0. (2.157)

Therefore, for the bracketed term,

β2
1β2uαβ − β1β2

DQαβ
Dt

= β2
1β2uαβ if α or β = z. (2.158)

Considering now the other three independent terms,

β2
1β2uxx − β1β2

DQxx
Dt

=
β2

1β2

2
(uxx + uyy) + β1

(
χ′ − L(∂2

x + ∂2
y)
)
Q̃ (2.159)

β2
1β2uyy − β1β2

DQyy
Dt

=
β2

1β2

2
(uxx + uyy) + β1

(
χ′ − L(∂2

x + ∂2
y)
)
Q̃ (2.160)

β2
1β2uxy − β1β2

DQxy
Dt

= β1

(
χ′ − L(∂2

x + ∂2
y)
)
q. (2.161)

Therefore, the bracketed term is

β2
1β2uαβ − β1β2

DQαβ
Dt

=


β2

1β2uαβ α or β = z

β2
1β2
2 (uxx + uyy) + β1

(
χ′ − L(∂2

x + ∂2
y)
)
Q̃ α = β 6= z

β1

(
χ′ − L(∂2

x + ∂2
y)
)
q α 6= β, α, β 6= z

. (2.162)

This can be written in a more compact form,

β2
1β2uαβ − β1β2

DQαβ
Dt

=β2
1β2uαβ(δαz + δβz − δαzδβz) +

uxx + uyy
2

(δαxδβx + δαyδβy)

+ β1

(
χ′ − L(∂2

x + ∂2
y)
)
Q′αβ. (2.163)

Defining wαβ ≡ β2
1β2uαβ(δαz + δβz − δαzδβz) + (uxx + uyy) (δαxδβx + δαyδβy) /2, the stress tensor is

σαβ = 2ηuαβ − pδαβ + ζ ′∆µQ0
αβ +

(
ζ∆µ+ β1χ− β1L(∂2

x + ∂2
y)
)
Q′αβ + β2

1β2wαβ. (2.164)

As pointed out by Salbreux, et al., the wαβ term represents anisotropy of the viscosity (arising because
we constrained the order parameter for alignment in the xy-plane), which we already specifically
neglected in section 2.7.5, so the wαβ term, may also be neglected.
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For reference, we now write all the components of the stress tensor.

σxx = 2η∂xvx − p+ (ζ∆µ+ β1β2λ∆µ)Q0
xx +

(
ζ∆µ+ β1χ− β1L(∂2

x + ∂2
y)
)
Q̃ (2.165)

σxy = σyx = η(∂xvy + ∂yvx) +
(
ζ∆µ+ β1χ− β1L(∂2

x + ∂2
y)
)
q (2.166)

σxz = σzx = η(∂xvz + ∂zvx) (2.167)

σyy = 2η∂yvy − p+ (ζ∆µ+ β1β2λ∆µ)Q0
yy −

(
ζ∆µ+ β1χ− β1L(∂2

x + ∂2
y)
)
Q̃ (2.168)

σyz = σzy = η(∂yvz + ∂zvy) (2.169)

σzz = 2η∂zvz − p+ (ζ∆µ+ β1β2λ∆µ)Q0
zz, (2.170)

where, as noted before, Q0
xx = Q0

yy = 1/6 and Q0
zz = −1/3.

2.9.4 Equations of motion

Given the expression for the stress tensor, we can write the equations of motion. We assume that all
phenomenological coefficients that are not active are constants. This includes η, β1, β2, χ, and L.

ρ
dvx
dt

= ∂βσxβ = η
(
∂2
x + ∂2

y + ∂2
z

)
vx − ∂xp+ β1χ

(
∂xQ̃+ ∂yq

)
− β1L

(
(∂3
x + ∂x∂

2
y)Q̃+ (∂2

x∂y + ∂3
y)q
)

+Q0
xx∂xζ∆µ+ ∂x(ζ∆µQ̃) + ∂y(ζ∆µq) + β1β2Q

0
xx∂xλ∆µ (2.171)

ρ
dvy
dt

= ∂βσyβ = η
(
∂2
x + ∂2

y + ∂2
z

)
vy − ∂yp+ β1χ

(
∂xq − ∂yQ̃

)
− β1L

(
(∂3
x + ∂x∂

2
y)q − (∂2

x∂y + ∂3
y)Q̃

)
+Q0

yy∂yζ∆µ+ ∂x(ζ∆µq)− ∂y(ζ∆µQ̃) + β1β2Q
0
yy∂yλ∆µ, (2.172)

where we have used incompressibility, ∂γvγ = 0. The second line of the two equations represent the
active terms.

If we do not have rigid plates on either side of the thin sheet, we assume that the stress normal to
the sheet vanishes, or σzz = 0. If this is the case, the pressure is set by

p = −2η(∂xvx + ∂yvy) + (ζ∆µ+ β1β2λ∆µ)Q0
zz, (2.173)

The equations of motion then become

ρ
dvx
dt

= η
(
∂2
x + ∂2

y + ∂2
z

)
vx + 2η∂x(∂xvx + ∂yvy)

+ β1χ
(
∂xQ̃+ ∂yq

)
− β1L

(
(∂3
x + ∂x∂

2
y)Q̃+ (∂2

x∂y + ∂3
y)q
)

+ (Q0
xx −Q0

zz)∂xζ∆µ+ ∂x(ζ∆µQ̃) + ∂y(ζ∆µq) + β1β2(Q0
xx −Q0

zz)∂xλ∆µ (2.174)

ρ
dvy
dt

= η
(
∂2
x + ∂2

y + ∂2
z

)
vy + 2η∂y(∂xvx + ∂yvy)

+ β1χ
(
∂xq − ∂yQ̃

)
− β1L

(
(∂3
x + ∂x∂

2
y)q − (∂2

x∂y + ∂3
y)Q̃

)
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+ (Q0
yy −Q0

zz)∂yζ∆µ+ ∂x(ζ∆µq)− ∂y(ζ∆µQ̃) + β1β2(Q0
yy −Q0

zz)∂yλ∆µ. (2.175)

As suggested by Guillaume, we can use the definition of the stress tensor and the continuity equation
to re-write the first two terms (2.174) and (2.175). We note that

η∂2
zvx = ∂zσxz − η∂z∂xvz = ∂zσxz + η∂x(∂xvx + ∂yvy), (2.176)

by the expression we derived for the stress tensor and continuity. Similarly,

η∂2
zvy = ∂zσxy − η∂z∂yvz = ∂zσyz + η∂y(∂xvx + ∂yvy). (2.177)

Substitution of these two equations into (2.174) and (2.175) gives, after rearranging,

ρ
dvx
dt

= ∂zσxz + η(∂2
x + ∂2

y)vx + 3η∂x(∂xvx + ∂yvy)

+ β1χ
(
∂xQ̃+ ∂yq

)
− β1L

(
(∂3
x + ∂x∂

2
y)Q̃+ (∂2

x∂y + ∂3
y)q
)

+ (Q0
xx −Q0

zz)∂xζ∆µ+ ∂x(ζ∆µQ̃) + ∂y(ζ∆µq) + β1β2(Q0
xx −Q0

zz)∂xλ∆µ (2.178)

ρ
dvy
dt

= ∂zσxz + η(∂2
x + ∂2

y)vy + 3η∂y(∂xvx + ∂yvy)

+ β1χ
(
∂xq − ∂yQ̃

)
− β1L

(
(∂3
x + ∂x∂

2
y)q − (∂2

x∂y + ∂3
y)Q̃

)
+ (Q0

yy −Q0
zz)∂yζ∆µ+ ∂x(ζ∆µq)− ∂y(ζ∆µQ̃) + β1β2(Q0

yy −Q0
zz)∂yλ∆µ. (2.179)

2.9.5 Averaging over the z-dimension

To get a two-dimensional description of the active nematic fluid, we must average over the z-dimension.
In general, for a quantity a, the average over the thin dimension of the film (z, with thickness h), is

ā ≡ 1

h

∫ h

0
dz a. (2.180)

Note that

∂xa =
1

h

∫ h

0
dz ∂xa =

1

h
∂x

∫ h

0
dz a− a∂xh = ∂x

(
1

h

∫ h

0
dz a

)
− (∂xh)

(
a+

1

h2

∫ h

0
dz a

)
. (2.181)

If ∂xh ≈ 0, then ∂xa ≈ ∂xā. Similar results hold for ∂ya, ∂2
xa, ∂2

ya, and ∂x∂ya. Note that, in general

ab 6= āb̄, unless ∂za = 0 or ∂zb = 0. In addition to the constant coefficients, we also assume that ρ, ni,
and Qαβ do not change appreciably over z.

We can now perform the average over the equations of motion, (2.178) and (2.179), using the above
relations and assumptions, further assuming that the thickness is approximately constant in space.
The only integrals that arise that we have not yet addressed are of the form

1

h

∫ h

0
dzσxz =

σxz|h0
h

. (2.182)

Therefore, the integral is proportional to a shear stress at the surface of the fluid. This could be a
stress against, e.g., a cell membrane or cytoplasm. The stress can depend only on local parameters, and
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cannot depend on the order parameter, as can be seen for the expression we derived for σxz. The stress
is not normal, so it cannot depend on the pressure. This leaves only the average velocity. Therefore,
we take

1

h

∫ h

0
dzσxz =

σxz|h0
h

= −γv̄x, (2.183)

where γ is a friction coefficient capturing the proportionality between the surface shear stress and the
velocity. A similar relation holds in the y direction.

Performing the averaging yields

ρ∂tv̄x + ρvγ∂γvx = η(∂2
x + ∂2

y)v̄x + 3η∂x(∂xv̄x + ∂yv̄y)− γv̄x + β1χ
(
∂xQ̃+ ∂yq

)
− β1L

(
(∂3
x + ∂x∂

2
y)Q̃+ (∂2

x∂y + ∂3
y)q
)

+ (Q0
xx −Q0

zz)∂xζ̄∆µ

+ ∂x(ζ̄∆µQ̃) + ∂y(ζ̄∆µq) + β1β2(Q0
xx −Q0

zz)∂xλ̄∆µ, (2.184)

ρ∂tv̄y + ρvγ∂γvy = η
(
∂2
x + ∂2

y

)
v̄y + 3η∂y(∂xv̄x + ∂yv̄y)− γv̄y + β1χ

(
∂xq − ∂yQ̃

)
− β1L

(
(∂3
x + ∂x∂

2
y)q − (∂2

x∂y + ∂3
y)Q̃

)
+ (Q0

yy −Q0
zz)∂y ζ̄∆µ

+ ∂x(ζ̄∆µq)− ∂y(ζ̄∆µQ̃) + β1β2(Q0
yy −Q0

zz)∂yλ̄∆µ, (2.185)

where ζ̄ is not to be confused with the previous use of that symbol representing the Onsager coefficient
Lr0v. The nonlinear term on the left hand side presents a difficulty. Under circumstances where the
Reynolds number is low, this term may be ignored. We retain the time derivative term, which may
remain, even at small Reynolds number, if the Strouhal number is also small, i.e., if there is another
slow process (e.g., slow diffusion of chemical reaction) occurring in addition to fluid motion. Going
forward, we neglect the nonlinear term on the left hand side.

Averaging the equation describing the dynamics of the order parameter, again assuming ∂zQαβ ≈ 0,
yields

∂tQ̃ = −(v̄x∂x + v̄y∂y)Q̃− q(∂xv̄y − ∂yv̄x) +
β1

2
(∂xv̄x − ∂yv̄y)

−
(
χ

β2
− L

β2
(∂2
x + ∂2

y)

)
Q̃+ λ̄∆µQ̃ (2.186)

∂tq = −(v̄x∂x + v̄y∂y)q + Q̃(∂xv̄y − ∂yv̄x) +
β1

2
(∂xv̄y + ∂yv̄x)

−
(
χ

β2
− L

β2
(∂2
x + ∂2

y)

)
q + λ̄∆µq. (2.187)

We note that in order to maintain a constant thickness, material must be brought into and out of the
thin layer. The rate at which material flows in and out may be found by averaging the incompressibility
condition, ∂γvγ = 0.

vz|h0 = −h(∂xv̄x + ∂yv̄y). (2.188)
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The left hand side is interpreted as the fluid velocity of material flowing out of the thin layer in the z
direction.

Averaging the reaction-diffusion-advection equation for a chemical species, assuming ∂zni ≈ 0 and
a diagonal diffusivity tensor, yields

∂tni = Di(∂
2
x + ∂2

y)ni − ∂x(niv̄x)− ∂y(niv̄y) +

[
−nivz|

h
0

h

]
+
∑
k

νkirk. (2.189)

The term in brackets represents the flux of species i out of the thin film. The expression for this term
is given by (2.188). We may, however, imagine a situation where fluid may be exchanged through the
boundaries of the thin film, but not diffusing species i. We introduce a parameter, αi ∈ [0, 1] to allow
for this situation.5 If αi < 1, the exit of species i from the boundaries of the thin film is inhibited.
Thus, we get

∂tni = Di(∂
2
x + ∂2

y)ni − (1− αi)ni(∂xv̄x + ∂yv̄y)− v̄x∂xni − v̄y∂yni +
∑
k

νkirk. (2.190)

2.9.6 Summary of governing equations

In summary, the governing dynamical equations for a thin film of active viscous nematic fluid in which
species can diffuse, taking all the assumptions thus far mentioned are

ρ∂tvx = η(∂2
x + ∂2

y)vx + η2d
v ∂x(∂xvx + ∂yvy) + β1χ

(
∂xQ̃+ ∂yq

)
− β1L

(
(∂3
x + ∂x∂

2
y)Q̃+ (∂2

x∂y + ∂3
y)q
)

+ (Q0
xx −Q0

zz)∂xζ∆µ+ ∂x(ζ∆µQ̃) + ∂y(ζ∆µq) + β1β2(Q0
xx −Q0

zz)∂xλ∆µ− γvx (2.191)

ρ∂tvy = η
(
∂2
x + ∂2

y

)
vy + η2d

v ∂y(∂xvx + ∂yvy) + β1χ
(
∂xq − ∂yQ̃

)
− β1L

(
(∂3
x + ∂x∂

2
y)q − (∂2

x∂y + ∂3
y)Q̃

)
+ (Q0

yy −Q0
zz)∂yζ∆µ+ ∂x(ζ∆µq)− ∂y(ζ∆µQ̃) + β1β2(Q0

yy −Q0
zz)∂yλ∆µ− γvy (2.192)

∂tQ̃ = −(vx∂x + vy∂y)Q̃− q(∂xvy − ∂yvx) +
β1

2
(∂xvx − ∂yvy)

−
(
χ

β2
− L

β2
(∂2
x + ∂2

y)

)
Q̃+ λ∆µQ̃ (2.193)

∂tq = −(vx∂x + vy∂y)q + Q̃(∂xvy − ∂yvx) +
β1

2
(∂xvy + ∂yvx)

−
(
χ

β2
− L

β2
(∂2
x + ∂2

y)

)
q + λ∆µq (2.194)

∂tni = Di(∂
2
x + ∂2

y)ni − (1− αi)ni(∂xvx + ∂yvy)− vx∂xni − vy∂yni +
∑
k

νkirk, (2.195)

where we have removed the overbars for notational convenience. We have defined η2d
v to be the two-

dimensional bulk viscosity, which we have derived to be η2d
v = 3η. Note that, in general, any of the

coefficients may depend on the concentrations ni. Of particular interest are the active terms, ζ∆µ and
λ∆µ.

5This is a simplistic way to do it, since the tacit assumption is that the concentration of regulator in the medium in
which it can exchange is the same as it is locally in x and y in the film. A more reasonable expression can be derived,
depending on the nature of the medium that the thin film can exchange material with.
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3 Sponanteous flow and nematic alignment

We now consider the possibility that a thin film of an active nematic fluid, initially isotropic and
without flow, can spontaneously align and flow. To do so, we consider the following simple case.

1) The Reynolds number is so small that the time derivatives in (2.191) and (2.192) may be neglected
(η̃χ̃Re ≈ 0, cf. section 4).

2) We treat the fluid as a single species.

3) There is a single regulator or active stress and active alignment, i.e., ζ∆µ = ζ∆µ(n) and λ∆µ =
λ∆µ(n).

4) There are no other chemical reactions besides those generating active processes.

3.1 The quiescent, isotropic, homogeneous steady state

The isotropic, quiescent, homogeneous steady state has Q̃ = q = 0 and n = n0. Then, by (2.191) and
(2.192),

(∂2
x + ∂2

y)vx + η2d
v ∂x(∂xvx + ∂yvy) = γ̃vx (3.1)

(∂2
x + ∂2

y)vy + η2d
v ∂y(∂xvx + ∂yvy) = γ̃vy, (3.2)

so vx = vy = 0. Therefore, we also have ∂tQ̃ = ∂tq = 0 by (2.193) and (2.194), consistent with our
putative isotropic steady state. We consider a perturbation to this steady state,

Q̃ = δQ̃est+ikxx+ikyy (3.3)

q = δqest+ikxx+ikyy (3.4)

n = n0 + δnest+ikxx+ikyy. (3.5)

The steady state active stress is ζ∆µ(n0), and under the perturbation, the active stress, to first order
in the perturbation, is

ζ∆µ(n) = ζ∆µ(n0) + δnest+ikxx+ikyy ∂nζ∆µ(n0) = ζ∆µ(n0) + n′ ∂nζ∆µ(n0), (3.6)

where we have defined

n′ ≡ δnest+ikxx+ikyy (3.7)

for notational convenience. Note that the derivatives are easily calculated, e.g.,

∂xq = ikxq, ∂tq = sq, etc. (3.8)

3.2 Velocity profiles

We insert the perturbations in Q̃, q, and n into (2.191) and (2.192) (using Q0
xx−Q0

zz = Q0
yy−Q0

zz = 1/2)
to get, to linear order in the perturbation,

i
(

(η(∂2
x + ∂2

y)− γ)vx + η2d
v ∂x(∂xvx + ∂yvy)

)
= β1χ(kxQ̃+ kyq) + β1L

(
(k3
x + kxk

2
y)Q̃+ (k2

xky + k3
y)q
)
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+
kx
2
ζnn

′ + kxζ0Q̃+ kyζ0q +
kx
2
β1β2λnn

′ (3.9)

i
(

(η(∂2
x + ∂2

y)− γ)vy + η2d
v ∂y(∂xvx + ∂yvy)

)
= β1χ(kxq − kyQ̃) + β1L

(
(k3
x + kxk

2
y)q − (k2

xky + k3
y)Q̃

)
+
ky
2
ζnn

′ + kxζ0q − kyζ0Q̃+
ky
2
β1β2λnn

′, (3.10)

where we have used the fact that Q0
xx −Q0

zz = Q0
yy −Q0

zz = 1/2. We have also defined

ζ0 ≡ ζ∆µ(n0), ζn ≡ ∂nζ∆µ(n0) (3.11)

λ0 ≡ λ∆µ(n0), λn ≡ ∂nλ∆µ(n0) (3.12)

for notational convenience. The velocities are easily solved for by Fourier transform to give

vx =

(
ηk2 + η2d

v k
2
y + γ

)
gx − η2d

v kxkygy

((η + η2d
v )k2 + γ) (ηk2 + γ)

(3.13)

vy =

(
ηk2 + η2d

v k
2
x + γ

)
gy − η2d

v kxkygx

((η + η2d
v )k2 + γ) (ηk2 + γ)

, (3.14)

where k ≡
√
k2
x + k2

y and

gx ≡ i
[
β1(χ+ Lk2)(kxQ̃+ kyq) +

kx
2
ζnn

′ + ζ0(kxQ̃+ kyq) +
β1β2

2
kxλnn

′
]
, (3.15)

gy ≡ i
[
β1(χ+ Lk2)(kxq − kyQ̃) +

ky
2
ζnn

′ + ζ0(kxq − kyQ̃) +
β1β2

2
kyλnn

′
]
. (3.16)

For convenience, we compute

d(∂xvx − ∂yvy) = id(kxvx − kyvy)

= −β1

(
χ+ Lk2

) [(
k2
(
ηk2 + γ

)
+ 4η2d

v k
2
xk

2
y

)
Q̃− 2η2d

v (k2
x − k2

y)kxkyq
]

− 1

2
(k2
x − k2

y)(ηk
2 + γ)ζnn

′ −
(
k2(ηk2 + γ) + 4η2d

v k
2
xk

2
y

)
ζ0Q̃

+ 2η2d
v kxky(k

2
x − k2

y)ζ0q −
β1β2

2
(k2
x − k2

y)(ηk
2 + γ)λnn

′ (3.17)

d(∂xvy + ∂yvx) = id(kxvy + kyvx)

= β1

(
χ+ Lk2

) [
2η2d
v (k2

x − k2
y)kxkyQ̃−

(
k2
(
ηk2 + γ

)
+ η2d

v (k2
x − k2

y)
2
)
q̃
]

− kxky(ηk2 + γ)ζnn
′ + 2η2d

v kxky(k
2
x − k2

y)ζ0Q̃

−
(
k2(ηk2 + γ) + η2d

v (k2
x − k2

y)
2
)
ζ0q − β1β2kxky(ηk

2 + γ)λnn
′, (3.18)

d(∂xvx + ∂yvy) = id(kxvx + kyvy)
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= −β1

(
χ+ Lk2

) (
ηk2 + γ

) (
(k2
x − k2

y)Q̃+ 2kxkyq
)
− k2

2
(ηk2 + γ)ζnn

′

− (ηk2 + γ)ζ0

(
(k2
x − k2

y)Q̃+ 2kxkyq
)
− β1β2

2
k2(ηk2 + γ)λnn

′, (3.19)

where

d =
(

(η + η2d
v )k2 + γ

) (
ηk2 + γ

)
, (3.20)

the denominator in the expressions for velocities.

3.2.1 Dispersion relation

We next substitute the velocity profiles into (2.193), (2.194) and (2.195). The first two terms of the
right hand sides of (2.193) and (2.194) then result in terms of order δQ̃2, δq2, and δQ̃δq. These are
second order in the perturbation, so we neglect them. Similarly, note that the vx∂xn and vy∂yn terms
in (2.195) are second order in the perturbation and therefore neglected. We get, then, to first order in
the perturbation,

sQ̃ = l11Q̃+ l12q + l13n
′ (3.21)

sq = l21Q̃+ l22q + l23n
′ (3.22)

sn′ = l31Q̃+ l32q + l33n
′, (3.23)

with

l11 = −β1

2d

(
k2(ηk2 + γ) + 4η2d

v k
2
xk

2
y

) (
β1(χ+ Lk2) + ζ0

)
− 1

β2

(
χ+ Lk2

)
+ λ0, (3.24)

l12 =
β1

d
η2d
v kxky(k

2
x − k2

y)
(
β1(χ+ Lk2) + ζ0

)
, (3.25)

l13 = −β1

4d
(k2
x − k2

y)(ηk
2 + γ) (ζn + β1β2λn) , (3.26)

l21 = l12, (3.27)

l22 = −β1

2d

(
k2(ηk2 + γ) + η2d

v (k2
x − k2

y)
2
) (
β1(χ+ Lk2) + ζ0

)
− 1

β2

(
χ+ Lk2

)
+ λ0, (3.28)

l23 = −β1

2d
kxky

(
ηk2 + γ

)
(ζn + β1β2λn) (3.29)

l31 =
1

d
(1− α)n0(ηk2 + γ)

(
k2
x − k2

y

) (
β1(χ+ Lk2) + ζ0

)
(3.30)

l32 =
2

d
(1− α)n0(ηk2 + γ)kxky

(
β1(χ+ Lk2) + ζ0

)
(3.31)

l33 = −Dk2 +
k2(1− α)n0

2d
(ηk2 + γ)(ζn + β1β2λn). (3.32)

Therefore, s is given by the eigenvalues of the 3×3 matrix with entries lij described above.
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To obtain the dispersion relation, we must compute these eigenvalues. There is an analytical
expression, but it is very complicated, consisting of the roots of a cubic polynomial, so it is of little
use. We are better off plotting the dispersion relation for given parameter values. Nonetheless, we note
that it is possible to have imaginary eigenvalues, so an oscillatory instability is possible.

3.3 Special cases

We will eventually look are dispersion relations for various parameter values. For now, we consider
some special cases that can be treated analytically.

3.3.1 Very weak coupling of nematic order

If the coupling to nematic order is very weak, i.e., β1 = λ = β−1
2 = 0, we essentially recover the situation

described in Bois, Jülicher, and Grill (with an extra factor of 1/2 multiplying the active stress, α = 0,
and η → η + η2d

v ). In this case, the dispersion relation is

s = −Dk2 +
(1− α)n0k

2

2 ((η + η2d
v )k2 + γ)

∂n ζ∆µ(n0). (3.33)

Note that if the active stress is expansive ζ∆µ(n0) < 0, and the homogeneous steady state is unstable
regardless of the sign of ∂nζ∆µ(n0) (i.e., regardless of whether we have an active stress up-regulator or
down-regulator). However, if we have a contractile active stress, the results are as described in Bois,
Jülicher, and Grill.

3.3.2 Constant active terms

If ζ∆µ and λ∆µ are not functions of n, the dispersion relation simplifies to

s1 = − β1

(η + η2d
v )k2 + γ

k2
(
β1(χ+ Lk2) + ζ0

)
− 2

β2
(χ+ Lk2) + 2λ0, (3.34)

s2 = − β1

ηk2 + γ
k2
(
β1(χ+ Lk2) + ζ0

)
− 2

β2
(χ+ Lk2) + 2λ0. (3.35)

Note that we have real eigenvalues, so we do not have an oscillatory instability. If we have a contractile
active stress (ζ0 > 0), the first two terms are negative for all k. They reach a maximum (minimal
absolute value) when k = 0. Therefore, the onset of instability of the isotropic steady state is

λ0 =
χ

β2
. (3.36)

Therefore, if λ0 is sufficiently large, we can get an instability.

However, we might expect λ0 = 0 in the absense of crosslinking of the nematic filaments. In this
case, the only alignment is by flow. In the absense of crosslinking, one can imagine an active stress
imparted on the fluid as a result of motors carrying cargo along the filaments, as opposed to sliding
filaments relative to each other. Here, one could consider the cargoes as a set of Stokeslets. If a
Stokeslet has a force Fα, then the resultant pressure is

p =
Fαxα

4π(xαxα)
3
2

+ p0, (3.37)
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where x is the Cartesian distance from the Stokeslet and p0 is the ambient pressure. Depending on
the system geometry, the resulting pressure can have either a positive or negative sign, so it is at least
possible in principle that ζ0 < 0. This is a delicate point that needs more thought, and might benefit
from treatment of a polar fluid as well.

3.3.3 Constant ζ∆µ < 0 with λ∆µ = 0

We now consider the case where ζ0 < 0 and λ0 = 0. Given that one of the eigenvalues is positive, the
larger is s2. Therefore, the pertinent dispersion relation is

s(k) =
β1

ηk2 + γ
k2
(
|ζ0| − β1(χ+ Lk2)

)
− 2

β2
(χ+ Lk2), (3.38)

where we use the absolute value of ζ0, remembering that ζ0 < 0. Note that for k = 0, s = −2χ/β2 < 0,
so the zero mode is always stable, provided we have friction. The homogeneous steady state is unstable
if there is a k for which

|ζ0| >
(
β1 +

2

β1β2k2
(ηk2 + γ)

)
(χ+ Lk2). (3.39)

The fastest growning mode occurs when

∂ks(k) = 0 and ∂2
ks(k) < 0. (3.40)

We have

∂ks(k) = k

[
2β1

(ηk2 + γ)2

(
γ|ζ0| − β1

(
Lk2(ηk2 + γ) + γ(χ+ Lk2)

))
− 4L

β2

]
. (3.41)

Clearly, s(k) has an extremum at k = 0. As shown before, s(0) < 0, and this extremum is a minimum
if |ζ0| is sufficiently large. We can solve ∂ks(k) = 0 for k, use this value to find the value of |ζ0| for
which s(k) = 0 to determine the onset of instability. The resulting expression is enormous and not
particularly informative. We are better off generating stability diagrams.

3.3.4 Constant ζ∆µ < 0 with λ∆µ = 0 with γ = 0

In the absense of friction (γ = 0), things are simpler.

s(k) =
β1

η

[
|ζ0| − β1(χ+ Lk2)

]
− 2

β2
(χ+ Lk2), (3.42)

so s reaches a maximum at k = 0. Thus, in the absense of friction, the fastest growing mode of an
instability is the zero mode (global flow and alignment), which occurs if

|ζ0| > χ

(
β1 +

2η

β1β2

)
. (3.43)

In other words, the active stress must be strong enough to overcome the tendency for the filaments
to remain randomly aligned, as measured by the inverse susceptability χ from the Landau-de Gennes
expansion.

Further, for a given χ, a small viscosity can lead to an instability, while a large viscosity will not.
Therefore, if everything else is constant, the bifurcation between an isotropic quiescent state to an
ordered, flowing state may be crossed by moving the viscosity down.
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3.3.5 Consequences on studies of ooplasmic streaming

This is a proof of principle that regulation of viscosity can result in moving from an isotropic quiescent
state (pre-streaming) to an ordered, flowing state (streaming) in filamentous active fluids. Two things
are important to note. First, this analysis requires an expansive active stress, as opposed to a contractile
one. Typically, the active stresses are contractile in nature for crosslinked networks of filaments.
However,

It is important to note that this is a nematic fluid. In the oocyte, the active stresses are acted along
microtubules, which, in the geometry of the oocyte are polar, not nematic. An interesting experimental
observation is that the absense or presence of dynein can result in kinesin-driven streaming or not,
respectively. This cannot be captured with a nematic fluid, since the directionality of the motors is
not taken into account. In a polar fluid, the active stress couples to a polar order parameter, so two
fighting motors in opposite direction, result in lower active stress coupling to fluid flow. For a nematic
fluid, the directionality cannot be distinguished, since the flow couples to a nematic order parameter.
Finally, it is interesting to note that we did not have to take into account viscoelasticity in this theory.

4 Dimensionless equations

To make the governing equations (written in section 2.9.6) dimensionless, we need to define character-
istic length, time, and velocity scales as `, τ , and U , respectively. It is also useful to know the following
dimensions of the parameters.

β1 [=] dimensionless (4.1)

β2 [=]
M

LT
[=] viscosity (4.2)

χ [=]
M

LT 2
[=] stress (4.3)

L [=]
ML

T 2
[=] force (4.4)

γ [=]
M

L3T
[=]

force density

velocity
(4.5)

λ∆µ [=] T−1 (4.6)

ζ∆µ [=]
M

LT 2
[=] stress (4.7)

4.1 Dimensionless parameters

This is a general specification, and the exact values of these depend on the particular geometry and
physical constraints of a given system. We define the characteristic length as ` and the characteristic
time scale as τ . The characteristic active stress is (ζ∆µ)0 and the characteristic active alignment is
(λ∆µ)0. We define the characteristic velocity of be U , and this is set by (ζ∆µ)0, as we will show in a
moment. For now, we define dimensionless variables

x̃ = x/` (4.8)
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ỹ = y/` (4.9)

ṽx = vx/U (4.10)

ṽy = vy/U (4.11)

t̃ = t/τ (4.12)

ζ̃∆µ = ζ∆µ/(ζ∆µ)0 (4.13)

λ̃∆µ = λ∆µ/(λ∆µ)0. (4.14)

To determine the characteristic velocity, we rewrite the equation of motion in 1D, neglecting the
contribution of the order parameter and assuming a zero Reynolds number.

1

2
∂xζ∆µ = −η∂2

xvx + γvx (4.15)

⇒ (ζ∆µ)0

`
∂x̃ζ̃∆µ = −ηU

`2

(
∂2
x̃ṽx +

γ

η
ṽx

)
. (4.16)

To have both sides of the equations be of the same magnitude, the characteristic velocity is set by
U = (ζ∆µ)0`/η. If we consider an infinite domain, the only length scale present is

√
η/γ. This sets

the characteristic velocity as U = (ζ∆µ)0/
√
ηγ. However, if we have no friction and γ = 0, there is

no characteristc length scale. Indeed, on an infinite domain the equation of motion has no physical
solution in the absense of friction. For a finite system the length scale is set by the size of the system
itself. For example, if we consider ζ̃∆µ = Θ(x), where Θ(x) is the Heaviside step function, and we
consider vx(−`/2) = vx(`/2) = 0, we get

vx =
(ζ∆µ)0`

8η

(
1− 2

|x|
`

)
. (4.17)

So, generally speaking, the characteristic velocity is given by

U =
(ζ∆µ)0`

η
. (4.18)

For convenience, we define two length scales, the hydrodynamic length scale and the nematic cor-
relation length, defined respectively by

`h =
√
η/γ and `n =

√
L/χ. (4.19)

Using these definitions, the governing equations become

Re

Sr
∂tvx = (∂2

x + ∂2
y)vx + η̃2d

v ∂x(∂xvx + ∂yvy)

+ β1χ̃
(
∂xQ̃+ ∂yq

)
− β1χ̃λ

2
n

(
(∂3
x + ∂x∂

2
y)Q̃+ (∂2

x∂y + ∂3
y)q
)

+
(

(Q0
xx −Q0

zz)∂xζ∆µ+ ∂x(ζ∆µQ̃) + ∂y(ζ∆µq)
)

+ β1Sr−1(Q0
xx −Q0

zz)∂xλ∆µ− λ−2
h vx, (4.20)
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Re

Sr
∂tvy = (∂2

x + ∂2
y)vy + η̃2d

v ∂y(∂xvx + ∂yvy)

+
β1χ̃

λh

(
∂xq − ∂yQ̃

)
− β1χ̃λ

2
n

λh

(
(∂3
x + ∂x∂

2
y)q − (∂2

x∂y + ∂3
y)Q̃

)
+ λ−1

h

(
(Q0

yy −Q0
zz)∂yζ∆µ+ ∂x(ζ∆µq)− ∂y(ζ∆µQ̃)

)
+ β1β̃2Sr−1(Q0

yy −Q0
zz)∂yλ∆µ− λ−2

h vy, (4.21)

Sr−1∂tQ̃ = −(vx∂x + vy∂y)Q̃− q(∂xvy − ∂yvx) +
β1

2
(∂xvx − ∂yvy)−

χ̃

β̃2λh

(
1− λ2

n(∂2
x + ∂2

y)
)
Q̃

+ λ∆µQ̃, (4.22)

Sr−1∂tq = −(vx∂x + vy∂y)q + Q̃(∂xvy − ∂yvx) +
β1

2
(∂xvy + ∂yvx)− χ̃

β̃2λh

(
1− λ2

n(∂2
x + ∂2

y)
)
q

+ λ∆µq, (4.23)

∂tni = D̃i(∂
2
x + ∂2

y)ni − Sr [(1− αi)ni(∂xvx + ∂yvy) + vx∂xni + vy∂yni] + τ
∑
k

νkirk. (4.24)

Here, we have omitted tildes on variables for notational convenience. The chemical reaction rates are
still dimensional as written, and are nondimensionalized in the mass conservation equation by being
multiplied by the characteristic time, τ . The dimensionless parameters are defined as

Reynolds number = Re =
ρU`

η
= ratio of inertial to viscous forces (4.25)

Strouhal number = Sr =
Uτ

`
= ratio of times scale of interest to time scale of fluid flow (4.26)

η̃2d
v = η2d

v /η = ratio of 2d bulk to shear viscosity (= 3) (4.27)

β1 = coupling constant of stress to molecular field (4.28)

χ̃ ≡ χ

(ζ∆µ)0
=

χ

U
√
ηγ

= ratio of alignment forces due to molecular field to active stress (4.29)

β̃2 ≡
β2

η
= ratio of viscosity of rotational alignment to viscosity (4.30)

λh ≡ `h/` = ratio of hydrodynamic length scale to characteristic length (4.31)

λn ≡ `n/` = ratio of nematic correlation length to characteristic length (4.32)

D̃i ≡
Diτ

`2
= ratio of characteristic time scale to diffusive time scale (4.33)
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4.2 Dimensionless equations for particular choice of `, τ , and U

Following Bois, Jülicher, and Grill, PRL, we consider only flows driven against viscous dissipation and
frictional losses by active processes. Here, the emphasis is on studying dynamics due to regulation of
active stress by diffusing, being advocated, and reacting species. To this end, we take ` = `h ≡

√
η/γ

as the characteristic length. This is the decay length of the velocity profile due to a step in active stress
in the absence of nematic order. The resulting velocity has a maximum of order

U =
(ζ∆µ)0√

ηγ
=

(ζ∆µ)0

γ`
, (4.34)

which we take to be our characteristic velocity. Finally, we take the time scale of interest to be the
diffusive time scale of species 1, τ = τD ≡ `2/D1. In this case, the Strouhal number is a Péclet number.

Sr = Pe =
U`

D1
=

(ζ∆µ)0

γD1
. (4.35)

Then, the governing equations are

Re

Pe
∂tvx = (∂2

x + ∂2
y)vx + 3∂x(∂xvx + ∂yvy)

+ β1χ̃
(
∂xQ̃+ ∂yq

)
− β1χ̃λ

2
n

(
(∂3
x + ∂x∂

2
y)Q̃+ (∂2

x∂y + ∂3
y)q
)

+ (Q0
xx −Q0

zz)∂xζ∆µ+ ∂x(ζ∆µQ̃) + ∂y(ζ∆µq)

+ β1β̃2Pe−1(Q0
xx −Q0

zz)∂xλ∆µ− vx, (4.36)

Re

Pe
∂tvy = (∂2

x + ∂2
y)vy + 3∂y(∂xvx + ∂yvy)

+ β1χ̃
(
∂xq − ∂yQ̃

)
− β1χ̃λ

2
n

(
(∂3
x + ∂x∂

2
y)q − (∂2

x∂y + ∂3
y)Q̃

)
+ (Q0

yy −Q0
zz)∂yζ∆µ+ ∂x(ζ∆µq)− ∂y(ζ∆µQ̃)

+ β1β̃2Pe−1(Q0
yy −Q0

zz)∂yλ∆µ− vy, (4.37)

Pe−1∂tQ̃ = −(vx∂x + vy∂y)Q̃− q(∂xvy − ∂yvx) +
β1

2
(∂xvx − ∂yvy)−

χ̃

β̃2

(
1− λ2

n(∂2
x + ∂2

y)
)
Q̃

+ λ∆µQ̃, (4.38)

Pe−1∂tq = −(vx∂x + vy∂y)q + Q̃(∂xvy − ∂yvx) +
β1

2
(∂xvy + ∂yvx)− χ̃

β̃2λh

(
1− λ2

n(∂2
x + ∂2

y)
)
q

+ λ∆µq, (4.39)

∂tni = (∂2
x + ∂2

y)ni − Pe [(1− αi)ni(∂xvx + ∂yvy) + vx∂xni + vy∂yni] + τD
∑
k

νkirk. (4.40)
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5 Numerical solution strategy

To solve equations (2.191), (2.192), (2.193), (2.194), and (2.195), we employ implicit-explicit (IMEX)
methods. We split the problem into the linear and nonlinear parts. The linear parts are integrated
with implicit time stepping and the nonlinear parts explicitly. We do all of this in Fourier space with
Re/Sr ≈ 0 (i.e., the left hand sides of (2.191) and (2.192) are both zero). We will also take αi = 0 ∀i.
Further, note that Q0

xx − Q0
zz = Q0

yy − Q0
zz = 1/2. We solve for the velocity at each time step and

integrate Q̃, q, and ni in time.

For this discussion, we assume we have periodic boundary conditions in both x and y.

5.1 Generic VSIMEX strategy

We adopt a variable step size IMEX scheme. The step sizes are chosen using a PID controller that
keeps the relative change in values of the solution within a set tolerance. I know give the basic VSIMEX
strategy.

Consider a set of PDEs,

∂tu = f(u) + g(u), (5.1)

where f(u) is a nonlinear function of u and g(u) is linear. Note that both f(u) and g(u) may contain
spatial differential operators, but for g(u), these operators must be linear. Let kn be the step size for
numerical integration step n. Let Un be the numerical solution for step n and let ωn+i = kn+i/kn. The
general s-step VSIMEX scheme is, as given by Wang and Ruuth, J. Comp. Math., 26, 838–855 (2008),

1

kn+s−1

s∑
j=0

αj,nU
n+j =

s−1∑
j=0

βj,nf
(
Un+j

)
+

s∑
j=0

γj,ng
(
Un+j

)
. (5.2)

The constants α, β, and γ are given in the Wang and Ruuth paper. We see that the current step
appears on both sides, but only in linear terms. Therefore, only the linear terms have implicit time
stepping, so we do not have to solve nonlinear equations at each time step. We instead need to solve a
linear system, which involves inverting a (potentially large and stiff) matrix. As we will see, doing the
time stepping in Fourier space often avoids the necessity to perform this matrix inversion. Instead, for
our particular system, we need only to invert a 2× 2 matrix.

The special cases we apply are second order semi-implicit backward differencing formula (SBDF2)
and second order Crank-Nicholson-Adams-Bashforth (CNAB2). In these cases, we have

CNAB2 :
Un+2 − Un+1

kn+1
=
(

1 +
ω

2

)
f(Un+1)− ω

2
f(Un) +

1

2

(
g(Un+2) + g(Un+1)

)
, (5.3)

SBDF2 :
1

kn+1

(
1 + 2ω

1 + ω
Un+2 − (1 + ω)Un+1 +

ω2

1 + ω
Un
)

= (1 + ω)f(Un+1)− ωf(Un) + g(Un+2),

(5.4)

where we have taken ω = ωn+1 = kn+1/kn for simpler notation.

5.2 Our problem in Fourier space

Re-writing (2.191) and (2.192) in Fourier space gives

k2v̂x + η̃2d
v

(
k2
xv̂x + kxkyv̂y

)
+ `−2

h v̂x = f̂x (5.5)
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k2v̂y + η̃2d
v

(
kxkyv̂x + k2

y v̂y
)

+ `−2
h v̂y = f̂y, (5.6)

where

f̂x =
i

η

[
β1χ(kxQ̂+ ky q̂) + β1Lk

2(kxQ̂+ ky q̂) +
kx
2
ζ̂∆µ+ kxζ̂∆µQ+ ky ζ̂∆µq +

β1β2

2
kxλ̂∆µ

]
(5.7)

f̂y =
i

η

[
β1χ(kxq̂ − kyQ̂) + β1Lk

2(kxq̂ − kyQ̂) +
ky
2
ζ̂∆µ+ kxζ̂∆µq − ky ζ̂∆µQ+

β1β2

2
kyλ̂∆µ

]
. (5.8)

To simplify notation, we have denoted the Fourier transform of Q̃ as Q̂. We can solve (5.5) and (5.6)
for v̂x and v̂y.

v̂x =

(
k2 + η̃2d

v k
2
y + `−2

h

)
f̂x − η̃2d

v kxkyf̂y(
(1 + η̃2d

v )k2 + `−2
h

) (
k2 + `−2

h

) (5.9)

v̂y =

(
k2 + η̃2d

v k
2
x + `−2

h

)
f̂y − η̃2d

v kxkyf̂x(
(1 + η̃2d

v )k2 + `−2
h

) (
k2 + `−2

h

) . (5.10)

We can take an inverse Fourier transform to solve for vx and vy. An important caveat, however, is
that when γ = 0 (and therefore `−2

h = 0), the solution of (2.191) and (2.192) is only unique up to an
additive constant with periodic boundary conditions. I.e., vx = v0

x + v1
x(x, y) and vy = v0

y + v1
y(x, y).

Conveniently, this additive constant is given by the zero mode in Fourier space. The reason for this is
that f̂x and f̂y are both functions of derivatives of periodic functions. This means than when the right
hand side of (5.5) and (5.6) is written as a Fourier series, there is no constant term. Therefore, the
zero mode of v̂x and v̂y must be zero.

With (5.9) and (5.10) in hand, and denoting the Fourier transform as F , we have

ηdF [∂xvx − ∂yvy] = iηd(kxv̂x − kyv̂y)

= −β1χ
[(
k2
(
k2 + `−2

h

)
+ 4η̃2d

v k
2
xk

2
y

)
Q̂− 2η̃2d

v (k2
x − k2

y)kxky q̂
]

− β1Lk
2
[(
k2
(
k2 + λ−2

h

)
+ 4η̃2d

v k
2
xk

2
y

)
Q̂− 2η̃2d

v (k2
x − k2

y)kxky q̂
]

− 1

2
(k2
x − k2

y)(k
2 + `−2

h )ζ̂∆µ−
(
k2(k2 + `−2

h ) + 4η̃2d
v k

2
xk

2
y

)
ζ̂∆µQ

+ 2η̃2d
v kxky(k

2
x − k2

y)ζ̂∆µq − β1β2

2
(k2
x − k2

y)(k
2 + `−2

h )λ̂∆µ (5.11)

ηdF [∂xvy + ∂yvx] = iηd(kxv̂y + kyv̂x)

= β1χ
[
2η̃2d
v (k2

x − k2
y)kxkyQ̂−

(
k2
(
k2 + `−2

h

)
+ η̃2d

v (k2
x − k2

y)
2
)
q̂
]

+ β1Lk
2
[
2η̃2d
v (k2

x − k2
y)kxkyQ̂−

(
k2
(
k2 + λ−2

h

)
+ η2d

v (k2
x − k2

y)
2
)
q̂
]

− kxky(k2 + `−2
h )ζ̂∆µ+ 2η̃2d

v kxky(k
2
x − k2

y)ζ̂∆µQ

−
(
k2(k2 + `−2

h ) + η̃2d
v (k2

x − k2
y)

2
)
ζ̂∆µq − β1β2kxky(k

2 + `−2
h )λ̂∆µ. (5.12)
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where

d =
(

(1 + η̃2d
v )k2 + `−2

h

) (
k2 + `−2

h

)
, (5.13)

the denominator in the expressions for the Fourier transforms of the velocity.

Note that we can solve for vx and vy by performing an inverse FFT on (5.9) and (5.10). Given
these solutions and the expressions for the derivatives of the velocities in Fourier space, we can write
(2.193) in Fourier space.

∂tQ̂ = − 1

β2

(
χ+ Lk2

)
Q̂

− β2
1

2ηd

(
χ+ Lk2

) [(
k2
(
k2 + `−2

h

)
+ 4η̃2d

v k
2
xk

2
y

)
Q̂− 2η̃2d

v (k2
x − k2

y)kxky q̂
]

− β1

2ηd

[
1

2
(k2
x − k2

y)(k
2 + `−2

h )ζ̂∆µ+
(
k2(k2 + `−2

h ) + 4η̃2d
v k

2
xk

2
y

)
ζ̂∆µQ

−2η̃2d
v (k2

x − k2
y)kxky ζ̂∆µq

]
− β2

1β2

4ηd
(k2
x − k2

y)(k
2 + `−2

h )λ̂∆µ

+ F
[
−(vx∂x + vy∂y)Q̃− q(∂xvy − ∂yvx) + λ∆µQ̃

]
, (5.14)

where d is given by (5.13). Here, the first three lines are linear in Q̂ and q̂. The remaining terms are
nonlinear. We can also write (2.194) in Fourier space.

∂tq̂ = − 1

β2
(χ+ Lk2)q̂

+
β2

1

2ηd

(
χ+ Lk2

) [
2η̃2d
v (k2

x − k2
y)kxkyQ̂−

(
k2
(
k2 + `−2

h

)
+ η̃2d

v (k2
x − k2

y)
2
)
q̂
]

− β1

2ηd

[
kxky(k

2 + `−2
h )ζ̂∆µ− 2η̃2d

v kxky(k
2
x − k2

y)ζ̂∆µQ

+
(
k2(k2 + `−2

h ) + η̃2d
v (k2

x − k2
y)

2
)
ζ̂∆µq

]
− β2

1β2

2ηd
kxky(k

2 + `−2
h )λ̂∆µ

+ F
[
−(vx∂x + vy∂y)q + Q̃(∂xvy − ∂yvx) + λ∆µq

]
(5.15)

Finally, we can write (4.24) in Fourier space, again with αi = 0.

∂tn̂i = −Dik
2n̂i + F

[
−∂x(nivx)− ∂y(nivy) +

∑
k

νkirk

]
. (5.16)

In this case, the first term is linear.
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5.3 Implementation

To help reduce bugs, we introduce the following constants, recalling d, already defined in (5.13).

d =
(

(1 + η̃2d
v )k2 + `−2

h

) (
k2 + `−2

h

)
= a0(a0 + η̃2d

v k
2) (5.17)

a0 = k2 + `−2
h (5.18)

a1 =
β1χ

η
(5.19)

a2 =
β1L

η
k2 (5.20)

a3 =
β1β2

2η
(5.21)

a4 =
k2 + η̃2d

v k
2
y + `−2

h

d
(5.22)

a5 =
k2 + η̃2d

v k
2
x + `−2

h

d
(5.23)

a6 =
η̃2d
v kxky
d

(5.24)

a7 =
1

β2

(
χ+ Lk2

)
(5.25)

a8 =
β2

1

2ηd
(χ+ Lk2) (5.26)

a9 = a0 k
2 + 4η̃2d

v k
2
xk

2
y (5.27)

a10 = 2η̃2d
v (k2

x − k2
y)kxky (5.28)

a11 = a0k
2 + η̃2d

v (k2
x − k2

y)
2 (5.29)

a12 =
β1

2ηd
(5.30)

a13 = a0kxky (5.31)

a14 =
a0(k2

x − k2
y)

2
(5.32)

a15 =
β2

1β2

2ηd
(5.33)

a16 = kxky a0. (5.34)
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With these definitions, we have

f̂x = i

[
a1(kxQ̂+ ky q̂) + a2(kxQ̂+ ky q̂) +

kx
2
ζ̂∆µ+ kxζ̂∆µQ+ ky ζ̂∆µq + a3kxλ̂∆µ

]
(5.35)

f̂y = i

[
a1(kxq̂ − kyQ̂) + a2(kxq̂ − kyQ̂) +

ky
2
ζ̂∆µ+ kxζ̂∆µq − ky ζ̂∆µQ+ a3kyλ̂∆µ

]
(5.36)

v̂x = a4f̂x − a6f̂y (5.37)

v̂y = a5f̂y − a6f̂x (5.38)

∂tQ̂ = −a7Q̂− a8

(
a9Q̂− a10q̂

)
− a12

(
a14ζ̂∆µ+ a9ζ̂∆µQ− a10ζ̂∆µq

)
− a15 a14λ̂∆µ

+ F
[
−(vx∂x + vy∂y)Q̃− q(∂xvy − ∂yvx) + λ∆µQ̃

]
(5.39)

∂tq̂ = −a7q̂ + a8

(
a10Q̂− a11q̂

)
− a12

(
a13ζ̂∆µ− a10ζ̂∆µQ+ a11ζ̂∆µq

)
− a15 a16λ̂∆µ

+ F
[
−(vx∂x + vy∂y)q + Q̃(∂xvy − ∂yvx) + λ∆µq

]
(5.40)

∂tn̂i = −Dik
2n̂i + F

[
− (∂x(nivx) + ∂y(nivy)) + τ

∑
k

νkirk

]
. (5.41)

To write the IMEX scheme, we make the following definitions

f̂Q(Q̂, q̂, n̂i) ≡ −a12

(
a14ζ̂∆µ+ a9ζ̂∆µQ− a10ζ̂∆µq

)
− a15 a14λ̂∆µ

+ F
[
−(vx∂x + vy∂y)Q̃− q(∂xvy − ∂yvx) + λ∆µQ̃

]
(5.42)

f̂q(Q̂, q̂, n̂i) ≡ −a12

(
a13ζ̂∆µ− a10ζ̂∆µQ+ a11ζ̂∆µq

)
− a15 a16λ̂∆µ

+ F
[
−(vx∂x + vy∂y)q + Q̃(∂xvy − ∂yvx) + λ∆µq

]
(5.43)

f̂ni(Q̂, q̂, n̂i) ≡ F

[
− (∂x(nivx) + ∂y(nivy)) + τ

∑
k

νkirk

]
(5.44)

b11 ≡ −a7 − a8a9 (5.45)

b12 = b21 ≡ a8a10 (5.46)

b22 ≡ −a7 − a8a11, (5.47)

and rewrite the above equations as

∂tQ̂ = b11Q̂+ b12q̂ + f̂Q(Q̂, q̂, n̂i) (5.48)

∂tq̂ = b21Q̂+ b22q̂ + f̂q(Q̂, q̂, n̂i) (5.49)

∂tn̂i = −Dik
2n̂i + f̂n(Q̂, q̂, n̂i) (5.50)
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Note that in practice, we set the zero mode in d to be unity when γ = 0 to avoid divide by zero errors
when computing the other constants. This is of no consequence because in the velocity calculations,
we intentionally set the zero modes of f̂x and f̂y to be zero, and in all other cases, the zero modes are
multiplied by a zero wave number in all expressions.

5.3.1 CNAB2 implementation

We can write the expressions for the CNAB2 scheme. We abbreviate f̂Q(Q̂n, q̂n, n̂ni ) as fQ(Un), with

similar abbreviations for f̂q and f̂ni .

Q̂n+2 − Q̂n+1

kn+1
=
(

1 +
ω

2

)
f̂Q(Un+1)− ω

2
f̂Q(Un) +

1

2

(
b11(Q̂n+2 + Q̂n+1) + b12(q̂n+2 + q̂n+1)

)
(5.51)

q̂n+2 − q̂n+1

kn+1
=
(

1 +
ω

2

)
f̂q(U

n+1)− ω

2
f̂q(U

n) +
1

2

(
b21(Q̂n+2 + Q̂n+1) + b22(q̂n+2 + q̂n+1)

)
(5.52)

n̂n+2
i − n̂n+1

i

kn+1
=
(

1 +
ω

2

)
f̂n1(Un+1)− ω

2
f̂ni(U

n)
D̃ik

2

2

(
n̂n+2
i + n̂n+1

i

)
. (5.53)

Rearrangement of these equations yields(
1

kn+1
− b11

2

)
Q̂n+2 − b12

2
q̂n+2 =

(
1 +

ω

2

)
f̂Q(Un+1)− ω

2
f̂Q(Un) +

(
1

kn+1
+
b11

2

)
Q̂n+1 +

b12

2
q̂n+1

(5.54)

−b21

2
Q̂n+2 +

(
1

kn+1
− b22

2

)
q̂n+2 =

(
1 +

ω

2

)
f̂q(U

n+1)− ω

2
f̂q(U

n) +
b21

2
Q̂n+1 +

(
1

kn+1
+
b22

2

)
q̂n+1

(5.55)(
1

kn+1
+
D̃ik

2

2

)
n̂n+2
i =

(
1 +

ω

2

)
f̂n1(Un+1)− ω

2
f̂ni(U

n) +

(
1

kn+1
− D̃ik

2

2

)
n̂n+1
i .

(5.56)

We can now solve for the values of Q̂n+2, q̂n+2, and n̂n+2
i . We define rhsQ and rhsq as the right hand

side of the top two equations. Then, we have

Q̂n+2 =
1(

1
kn+1

− b11
2

)(
1

kn+1
− b22

2

)
− b12b21

4

[(
1

kn+1
− b22

2

)
rhsQ +

b12

2
rhsq

]
(5.57)

q̂n+2 =
1(

1
kn+1

− b11
2

)(
1

kn+1
− b22

2

)
− b12b21

4

[
b21

2
rhsQ +

(
1

kn+1
− b11

2

)
rhsq

]
(5.58)

n̂n+2
i =

1

1
kn+1

+ D̃ik2

2

[(
1 +

ω

2

)
f̂n1(Un+1)− ω

2
f̂ni(U

n) +

(
1

kn+1
− D̃ik

2

2

)
n̂n+1
i

]
. (5.59)

Note that this solution requires that the matrix(
1

kn+1
− b11

2 − b12
2

− b12
2

1
kn+1

− b22
2

)
(5.60)
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is nonsingular. We can show this is the case by considering its determinant. The determinant is(
1

kn+1
− b11

2

)(
1

kn+1
− b22

2

)
− b212

4
= positive terms +

b11b22

4

(
1− b212

b11b22

)
. (5.61)

Since the product b11b22 is positive, we have only to show that the ratio

b212

b11b22
< 1 (5.62)

to prove that the determinant is positive and the matrix therefore nonsingular. Evaluating the ratio,

b212

b11b22
=

a2
8a

2
10

positive terms + a2
8a9a11

<
a2

10

a9a11
=

a2
10

positive terms + a2
10

< 1. (5.63)

Therefore, the determinant is positive and the matrix is nonsingular.

5.3.2 SBDF2 implementation

The formulae for the SBDF2 method are derived analogously.(
1 + 2ω

kn+1(1 + ω)
− b11

)
Q̂n+2 − b12q̂n+2 = (1 + ω)f̂Q(Un+1)− ωf̂Q(Un) +

1

kn+1

(
(1 + ω)Q̂n+1 − ω2

1 + ω
Q̂n
)

(5.64)

−b21q̂n+2 +

(
1 + 2ω

kn+1(1 + ω)
− b22

)
q̂n+2 = (1 + ω)f̂q(U

n+1)− ωf̂q(Un) +
1

kn+1

(
(1 + ω)q̂n+1 − ω2

1 + ω
q̂n
)
(5.65)(

1 + 2ω

kn+1(1 + ω)
+ D̃ik

2

)
n̂n+2
i = (1 + ω)f̂ni(U

n+1)− ωf̂ni(U
n) +

1

kn+1

(
(1 + ω)n̂n+1

i − ω2

1 + ω
n̂ni

)
.

(5.66)

Again, defining rhsQ as the right hand side of the first equation, etc., we have

Q̂n+2 =
1(

1+2ω
kn+1(1+ω) − b11

)(
1+2ω

kn+1(1+ω) − b22

)
− b12b21

[(
1 + 2ω

kn+1(1 + ω)
− b22

)
rhsQ + b12 rhsq

]
(5.67)

q̂n+2 =
1(

1+2ω
kn+1(1+ω) − b11

)(
1+2ω

kn+1(1+ω) − b22

)
− b12b21

[
b21 rhsQ +

(
1 + 2ω

kn+1(1 + ω)
− b11

)
rhsq

]
(5.68)

n̂n+2
i =

rhsni
1+2ω

kn+1(1+ω) + D̃ik2
. (5.69)

We can show that the system of equations always has a solution in a similar manner as we did for the
CNAB2 case.
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Appendix: Helpful relations

Aαβ and Bαβ are second order tensors. uα and vα are vectors. f is a scalar valued function.

Indicial and vector notation

uα vα = u · v = uT v (5.70)

uα vβ = uv = u⊗ v (5.71)

εαβγ uβ vγ = u× v (5.72)

Aαβ vβ = A · v (5.73)

Aαβ vα = AT · v (5.74)

Aαβ Bβγ = A ·B (5.75)

Aαβ Bγβ = A ·BT (5.76)

Aαβ Bαγ = AT ·B (5.77)

Aαβ Bαβ = A : B = Tr
(
AT ·B

)
(5.78)

Aαβ Bβα = A : BT = Tr
(
AT ·BT

)
(5.79)

Aαβ Bαβ = Aαβ Bβα for symmetric A (5.80)

Aαα = Aαβδαβ = Tr(A) (5.81)

AαµBβνCαβ = AT · C ·B (5.82)

∂αf = ∇f = grad f (5.83)

∂α vα = ∇ · v = div v (5.84)

εαβγ ∂α vβ = ∇× v = curl v (5.85)

∂α vβ = ∇v = ∇⊗ v (5.86)

∂β Aαβ = ∇ ·A (5.87)

∂αAαβ = ∇ ·AT (5.88)

∂α (vαvβ) = ∂β (vαvβ) = vα∂βvβ + vβ∂βvα = (∇ · v) v + v · ∇v (5.89)

|Aαβ| = εi1i2···inA1i1A2i1 · · ·Anin = det A (5.90)

δαβδαβ = 3 (5.91)

55



Properties of the Levi-Civita symbol

(Some of these properties are repeated below.) A tensor Aαβ may be split into a symmetric part Asαβ
and an antisymmetric part Aaαβ. We denote an antisymmetric tensor with an a superscript and a
symmetric tensor with an s superscript. Asαβ may be made traceless by simply subtracting a third of

the trace from the diagonal, Åsαβ = Asαβ − δαβAγγ/3.

εαβγ =


1 if αβγ = 123, 231, 312
−1 if αβγ = 321, 213, 132

0 otherwise
. (5.92)

εabcε123 = δa1(δb2δc3 − δb3δc2)− δa2(δb1δc3 − δb3δc1) + δa3(δb1δc2 − δb2δc1) (5.93)

εαβγ εαδµ = δβδδγµ − δβµδγδ, or εabcεa23 = δb2δc3 − δb3δc2 (5.94)

εαβγεαβδ = 2δγδ, or εabcεab3 = 2δc3 (5.95)

εαβγεαβγ = 6 (5.96)

1

2
εαβγεδµγAδµ = Aaαβ =

1

2
(Aαβ −Aβα) (5.97)

εαβγA
a
βγ = 2(Aa23,−Aa31, A

a
12)T (5.98)

εαβγaγ =

 0 a3 −a2

−a3 0 a1

a2 −a1 0

 . (5.99)

Transformation of tensors under arbitrary rotation

Let Tαβγ · · · be a rank n tensor and Rαβ denote an arbitrary rotation tensor. The transformed tensor
undergoing rotation is

T ′µνρ··· = (RµαRνβRργ · · · )Tαβγ ≡ RTαβγ···. (5.100)

The following properties hold for an arbitrary rotation.

RµαRνα = δµν (5.101)

δ′µν = RµαRνβδαβ = RµβRνβ = δµν (5.102)

ε′µνρ = RµαRνβRργεαβγ = εµνρ|Rαβ| = εµνρ (5.103)

Integration by parts

We consider integrations of functions (which may have different tensorial order) u(x) and v(x), when
x is a vector. We introduce the notation below.∫

Ω
dx = integral over volume Ω (5.104)
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∫
∂Ω
dx = integral over surface ∂Ω (5.105)

ν = outward unit normal from the surface ∂Ω (5.106)

Useful integrals: ∫
Ω
dx f ∂αvα =

∫
∂Ω
dx fvανα −

∫
Ω
dx vα∂αf (5.107)

∫
Ω
dx vα ∂αf =

∫
∂Ω
dx fvανα −

∫
Ω
dx f∂αvα (5.108)

∫
Ω
dx vα ∂βAαβ =

∫
∂Ω
dxAαβ vβ να −

∫
Ω
dxAαβ ∂αvβ (5.109)

∫
Ω
dx v2 ∂αvα =

∫
∂Ω
dx v2 vανα − 2

∫
Ω
dx vαvβ ∂αvβ (5.110)

Symmetry properties of 2nd order tensors

A tensor Aαβ may be split into a symmetric part Asαβ and an antisymmetric part Aaαβ. We denote an
antisymmetric tensor with an a superscript and a symmetric tensor with an s superscript. Asαβ may be

made traceless by simply subtracting a third of the trace from the diagonal, Åsαβ = Asαβ − δαβAγγ/3.

Aαβ = Asαβ +Aaαβ = Åsαβ +Aaαβ + δαβAγγ/3 (5.111)

Asαβ =
1

2
(Aαβ +Aβα) (5.112)

Aaαβ =
1

2
(Aαβ −Aβα) =

1

2
εαβγεδµγAδµ (5.113)

δαβÅ
s
αβ = 0 (5.114)

δαβA
a
αβ = 0 (5.115)

δαβAαβ = Aαα (5.116)

Asαβ = Asβα (5.117)

Aaαβ = −Aaβα ⇒ diagonal elements of Aaαβ = 0 (5.118)

Aαα = Asαα (5.119)

AaαβB
s
αβ = 0 (5.120)

AaαβB̊
s
αβ = 0 (5.121)

AaαβB
a
αβ =

1

2
(AαβBαβ −AαβBβα) (5.122)

AsαβB
s
αβ =

1

2
(AαβBαβ +AαβBβα) (5.123)
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ÅsαβB̊
s
αβ =

1

2
(AαβBαβ +AαβBβα)− 1

3
AααBββ (5.124)

εαβγA
s
αβ = εαβγA

s
βγ = 0 (5.125)

εαβγA
a
αβ = εαβγA

a
βγ = 2(Aa23,−Aa31, A

a
12)T (5.126)

If Cαβ = AαγBβγ , then

Csαβ =
1

2
(AαγBβγ +AβγBαγ) (5.127)

Caαβ =
1

2
(AαγBβγ −AβγBαγ). (5.128)
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