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1 Welcome

The first lecture provided a course overview. It is not really conducive for written
notes. The slides may be downloaded here.
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2 Biochemical kinetics in signaling

When we look at a picture of how signaling works in a cell, as in Fig. 1, we see that a
variety of processes occur along the signaling pathway. There is ligand binding to re-
ceptors that are embedded in a two-dimensional surface, the cell membrane. There
is the transport, either passive by diffusion or active by motor proteins, of signaling
molecules or transcription factors through the cytoplasm. Then, the transcription
factor needs to get into the nucleus via nuclear pore complexes. From there, it needs
to find the appropriate promoter to bind on the genome, an interesting transport
problem by itself. There are plenty of interactions with the machinery involved in
transcription, post transcriptional modifications, and eventual export from the nu-
cleus. There are lots and lots of kinetic processes! We might throw our hands up in
the air and scream that we do not know how to model all of that.

Figure 1: Schematic of a generic signaling pathway. Taken from Orphanides
and Reinberg, Cell, 108, 429–451, 2002.

So how do we overcome this modeling paralysis and proceed to develop physical
description of these processes? There are a few main ideas we can consider to deal
with this issue.

1. Separation of time scales. Some of the processes that happen along a signal-
ing pathway are very fast compared to others. So, if we are interested in the
dynamics of the entire pathway, say in terms of the more global response of a
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cell to a variation in ligand concentration, we can ignore the fast processes, or
at least assume that fast dynamics reach equilibrium rapidly.

2. Assumption of Poisson processes. In this context, a Poisson process may
be thought of as a series of well-defined, separate events that occur randomly,
without memory of what has occurred before. This is often the case for things
like molecular collisions. If we model the events along a signaling pathway as
Poisson processes, we can at least write down equations to describe the dy-
namics.

3. Consideration only of average properties. Instead of keeping track of what
each molecule in the cell is doing, we can instead only consider how the con-
centrations of molecular species.

In what follows, we will put these approximations to use to arrive amass action
kinetics to describe the dynamics of molecules involved in cell signaling, and in-
deed in many other cellular processes. These ideas are central to the Goentoro and
Kirschner paper, and will come into play throughout the rest of the course.

2.1 Thinking probabilistically: Master equations

Let us define very broadly a state s of a system to include all molecular species.
Whenever there is a change of state, say from s′ to s, there is a unit change in molec-
ular species. For example, two proteins molecules that are bound to each other can
separate, and this would lead to a state change. You can imagine that the state space
available to all molecules in a cell is enormous. Nonetheless, let us move forward to
write down a master equation to describe the dynamics of the probability that the
molecular species of a cell are in state s at time t, which we denote as P(s, t).

Generally, amaster equation is a loss-gain equation for probabilities of states gov-
erned by a Markov process.1 Specifically,

dP(s, t)
dt =

∑
s′

[W(s | s′)P(s′, t)− W(s′ | s)P(s, t)] . (2.1)

Here, W(s | s′) is the transition probability per unit time of going from s′ to s. Note
that there is an ODE for each of the many many many states s.

Themaster equationmakes sense by inspection and appears simple. The nuance
lies in the definition of the transition rates,W(s | s′). There is also the computational
difficulty that state space is enormous. In general, solving the master equation is
difficult and is usually intractable analytically.

1A good reference for studying master equations is Stochastic Processes in Physics and Chemistry by
N. G. van Kampen.
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Tomake somemore progress, let’s restrict what we call a “state.” Wewill define
a state to be a set of copy numbers of molecular species. At this point, it helps to be
less abstract and think of a concrete example. Consider the case where two signal-
ing molecules, a and b may bind and unbind to each other, and these are the only
molecules we are considering. There are then three molecular species a, b, and ab.
We then define a state by the copy numbers of these respective species.

s → n ≡ (na, nb, nab). (2.2)

Then, we can re-write the master equation as

dP(n, t)
dt =

∑
n′

[W(n | n′)P(n′, t)− W(n′ | n)P(n, t)] . (2.3)

2.2 Assigning the transition rates

Since the events that change the state are binding of an a and a b molecule or the
dissociation of an ab complex, we know that very many of the transition rates, W(n |
n′) are zero. Specifically, W(na, nb, nab | n′

a, n′
b, n′

ab) = 0 for all cases except:

nab = n′
ab − 1, na = n′

a + 1, nb = n′
b + 1 (dissociation)

or nab = n′
ab + 1, na = n′

a − 1, nb = n′
b − 1 (binding). (2.4)

What value should we assign W(n | n′) for these two cases? Consider first disso-
ciation. The probability per unit time of getting a dissociation event should be de-
pendent on the number of ab complexes there are. If there are no ab complexes, the
probability of getting a dissociation is zero. If we further assume that the complexes
are all independent of each other, valid in the dilute limit, then the probability of ob-
serving a transition should be proportional to the number of ab complexes. Finally,
since we model all processes as Poisson processes, there is no memory, so therefore
no temporal dependence. So, we have

Wdissoc = k−1 nab, (2.5)

where k−1 is a constant. (The subscript −1 denotes dissociation; we will use the
subscript 1 for binding.)

Now, let’s consider binding. Again, the transition rate for binding should be in-
dependent of time because we are dealing with Poisson processes. In order for a
binding event to happen, two molecules need to collide. The probability of colli-
sion should scale with the copy number of each species, a and b. It should also scale
inversely with the available volume (or surface area if we are talking about binding
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events on a membrane). In other words the bigger the volume, the less likely it is to
observe a collision.2 So, we have

Wbinding = k1nanb/V, (2.6)

where V is the volume of the cell or system of interest.

Now that we know our transition rates, we can rewrite the master equation.

dP(na, nb, nab, t)
dt =

k1

V (na + 1)(nb + 1)P(na + 1, nb + 1, nab − 1, t)

+ k−1(nab + 1)P(na − 1, nb − 1, nab + 1, t)

−
(

k1

V nanb + k−1nab

)
P(na, nb, nab, t), (2.7)

where it is understood that P(na, nb, nab, t) is zero if any of na, nb, or nab are less than
zero.

2.3 Dynamics of averages

Wenowhave aworkablemaster equation, but there still many, many equations. If we
instead consider instead how the average number of each species changes over time,
we can greatly reduce the number of equations. In doing this, we are throwing out
muchof the information contained in the probability distributionP(n, t), considering
only its first moment. With that caveat in mind, let’s compute the first moment.
Recall that the average number of a molecules is

⟨na⟩(t) =
∞∑

na=0

na P(na, t), (2.8)

with

P(na, t) =
∞∑

nb=0

∞∑
nab=0

P(na, nb, nab, t), (2.9)

thereby giving

⟨na⟩(t) =
∞∑

na=0

∞∑
nb=0

∞∑
nab=0

na P(na, nb, nab, t). (2.10)

2That the transition rate is proportional to V−1 and not, say, V−2 requires some careful analysis
we will not go into here.
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So, we will multiply both sides of equation (2.7) by na and apply the triple sum
∞∑

na=0

∞∑
nb=0

∞∑
nab=0

(2.11)

to the resulting equation. Evaluation of the left hand side of equation (2.7) is trivial.
∞∑

na=0

∞∑
nb=0

∞∑
nab=0

na
dP(na, nb, nab, t)

dt =
d⟨na⟩

dt . (2.12)

The last two terms on the right hand side are the easiest to evaluate.

−
∞∑

na=0

∞∑
nb=0

∞∑
nab=0

k1

V n2
anb P(na, nb, nab, t) = −k1

V

∞∑
na=0

∞∑
nb=0

n2
anb P(na, nb, t)

= −k1

V ⟨n2
anb⟩. (2.13)

Similarly,

−
∞∑

na=0

∞∑
nb=0

∞∑
nab=0

k−1nanab P(na, nb, nab, t) = −k−1⟨nanab⟩. (2.14)

In these expressions, for notational convenience, we have not written the explicit
time dependence of the averages. Now, we will work on the first sum on the right
hand side.

∞∑
na=0

∞∑
nb=0

∞∑
nab=0

k1

V na(na + 1)(nb + 1)P(na + 1, nb + 1, nab − 1, t)

=
k1

V

∞∑
na=0

∞∑
nb=0

∞∑
nab=0

na(na + 1)(nb + 1)P(na + 1, nb + 1, nab, t)

=
k1

V

∞∑
na=0

∞∑
nb=0

na(na + 1)(nb + 1)P(na + 1, nb + 1, t)

=
k1

V

∞∑
na=0

∞∑
nb=0

(na − 1)nanb P(na, nb, t)

=
k1

V
(
⟨n2

anb⟩ − ⟨nanb⟩
)
. (2.15)

And finally, the second sum on the right hand side.
∞∑

na=0

∞∑
nb=0

∞∑
nab=0

k−1na(nab + 1)P(na − 1, nb − 1, nab + 1, t)
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= k−1

∞∑
na=0

∞∑
nb=0

∞∑
nab=0

na(nab + 1)P(na − 1, nb, nab + 1, t)

= k−1

∞∑
na=0

∞∑
nab=0

na(nab + 1)P(na − 1, nab + 1, t)

= k−1

∞∑
na=0

∞∑
nab=0

(na + 1)nabP(na, nab, t)

= k−1 (⟨nanab⟩+ ⟨nab⟩) . (2.16)

Now that we have computed all of the sums, let’s put it all together.

d⟨na⟩
dt =

k1

V
(
⟨n2

anb⟩ − ⟨nanb⟩
)
+ k−1 (⟨nanab⟩+ ⟨nab⟩)−

k1

V ⟨n2
anb⟩ − k−1⟨nanab⟩

= −k1
⟨nanb⟩

V + k−1⟨nab⟩. (2.17)

If we assume that the particle counts of species a and species b are independent, then
⟨nanb⟩ = ⟨na⟩⟨nb⟩. Then, we have

d⟨na⟩
dt = −k1

⟨na⟩⟨nb⟩
V + k−1⟨nab⟩. (2.18)

The thermodynamic concentration of species i is ci = ⟨ni⟩/V. So, if we divide both
sides of the above equation by V, we get

dca

dt = −k1cacb + k−1cab. (2.19)

If we do the same averaging technique with nb and nab, we get

dcb

dt = −k1cacb + k−1cab, (2.20)

dcab

dt = k1cacb − k−1cab. (2.21)

We now have three equations in terms of concentrations that we derived from the
master equation.

2.4 The law of mass action

Chemical rate equations like those we just derived, in which the rate of a chemical
reaction is proportional to the products of the concentrations of the participating
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molecular species follow the law of mass action, often referred to as mass action
kinetics.

It is important to recall all of the assumptions we made to get here.

1. Events that change state are Poisson processes. Implicit in this assumption
is that the binding or dissociation (or any other event) happens essentially in-
stantaneously with well-defined pauses between them. This is one instance of
where a separation of time scales is important.

2. All molecular species are independent of each other; i.e., we are in the dilute
limit.

3. In our last step, by taking ⟨nanb⟩ ≈ ⟨na⟩⟨nb⟩, we tacitly assumed thatP(na, nb, t) ≈
P(na, t)P(nb, t), i.e., that na and nb are independent of each other, or that they
have small covariance. Note that this is not always necessarily the case, espe-
cially at small copy number.

In addition to these assumptions, we are willfully throwing out all information about
the probability distributions of the stateswe’remodeling, except for the firstmoment
(the mean).

Going forward in the course, we will use and abuse the law of mass action exten-
sively. Especially when the copy number of molecules are small, this could lead to
trouble. Wemightmiss the important of noise (since we are neglecting fluctuations),
or some of the underlying assumptions might not be valid. Nonetheless, the law of
mass action is one of those approximate theories that is “unreasonably effective” in
the sense that we are surprised at howwell it tends to work inmatching experimental
observation.

2.5 Sigmoidal rate dependence?

If you have studied systems biology, you often find expressions for rates that are sig-
moidal in shape, such as

dc
dt =

k1

k2 + c2 , (2.22)

a famous Hill function. This does not look like mass action at face. Where does this
come from?

You may be familiar with Michaelis-Menten kinetics for enzymatic activity. In
this scheme, a substrate s reacts with an enzyme e to form an intermediate which
then forms a product p according to the mechanism

e + s k1−−⇀↽−−
k−1

se q1−→ e + p. (2.23)
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Now, let’s consider the case where the complex se might bind another substrate in
the reaction

se + s k2−−⇀↽−−
k−2

s2e q2−→ se + p. (2.24)

There are now six reactions in total and a total of five species. We could write master
equations, perform averages, and then get the mass action expressions, but we will
just directly write the mass action ODEs directly.

dcs

dt = −k1cecs + k−1cse − k2csecs + k−2cs2e, (2.25)

dce

dt = −k1cecs + (k−1 + q1)cse, (2.26)

dcse

dt = k1cecs − (k−1 + q1)cse − k2csecs + (k−2 + q2)cs2e, (2.27)

dcs2e

dt = k2csecs − (k−2 + q2)cs2e, (2.28)

dcp

dt = q1cse + q2cs2e. (2.29)

We are primarily interested in the rate of consumption of substrate, so we seek a
simple expression for ċs in terms of the total enzyme and substrate concentration.
Toward this end, wemake a pseudo steady state approximation that ċse− ċs2e = 0.
This means that the concentrations of the intermediates do not change appreciably
on the time scale of product formation. Again, this is an instance where separation
of time scales allows us to make useful approximations to simplify the mathematics.
As a result, we have

k1cecs = (k−1 + q1)cse, (2.30)

k2csecs = (k−2 + q2)cs2e. (2.31)

We can rewrite the first of these equation as

cecs = KM,1cse, (2.32)

where

KM,1 ≡
k−1 + q1

k1
(2.33)

is the Michaelis constant for the first reaction. We also get

cec2
s = KM,1KM,2cs2e, (2.34)
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with

KM,2 ≡
k−2 + q2

k2
. (2.35)

Since the total amount of enzyme is conserved, we define the constant amount of
enzyme

ctot
e ≡ ce + cse + cs2e. (2.36)

Using this relation along with equations (2.34) and (2.36) allows us to write an ex-
pression for ce in terms of ctot

e and cs.

ce = ctot
e

(
1 +

cs

KM,1
+

c2
s

KM,1KM,2

)−1

. (2.37)

Substituting this expression, along with equations (2.34) and (2.36) into the expres-
sion for ċs (equation (2.25)) gives, after simplification

dcs

dt = −
ctot

e
(
q1KM,2cs + q2c2

s
)

KM,1KM,2 + KM,2cs + c2
s
. (2.38)

This equation has a sigmoidal form, and it looks like a typical phenomenological Hill
function (2.22) in certain limits. In particular, if q1 ≈ 0, that is if only the doubly-
complexed substrate can produce product, the numerator becomes q2ctot

e c2
s . Further,

if KM,2 ≪ cs ≪ KM,1, the denominator becomes KM,1KM,2 + c2
s . This means that

once one substrate molecules is bound to an enzyme, the second binds much faster
(its Michaelis constant is smaller). These limits are hallmarks of cooperativity. The
result is

dcs

dt = − q2ctot
e c2

s
KM,1KM,2 + c2

s
. (2.39)

which has the same form as the Hill equation (2.22) with Hill coefficient of 2.

The important lesson here is that many molecular mechanisms can give kinet-
ics that relate to phenomenological Hill equations. But the Hill equation by itself
says very little about the underlying mechanism. In my view, if you have a molecular
mechanism in mind, it is best to derive the actual expressions you want to use. In
fact, because it is not difficult to numerically solve a system of ODEs, you are often
better off just directly solving the original mass action ODEs you write down with-
out approximation. In the Goentoro and Kirschner paper, however, you will see that
the big advantage of carefully doing analytical work, nondimensionalizing, and mak-
ing reasonable approximations is that you can draw more general conclusions and
sometimes expose structure to the system that might otherwise be difficult to see.
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2.6 Sigmoidal rates of gene expression

If we are interested in the kinetics of actual gene products, not just intermediates
along the signaling pathway, we need to model the gene expression levels. This is
often down by throwing Hill functions around. However, I encourage you to not do
this, but rather to think carefully about the structure of the promoter region and the
transcription factors that bind it. If you take BE/APh 161, this will be covered in
detail, and I omit it in this course.
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3 Wnt signaling

In this lecture, we will discuss methods for modeling biochemical networks using
mass action kinetics with the example of Wnt signaling as our motivation.

3.1 Introduction to Wnt signaling

TheWnt (pronounced “wint”) signaling pathway is central in many developmental
processes. To see how central it is, you might want to visit the Wnt homepage, run
by RoelNusse’s lab at Stanford, which details the components of the pathway as well
as a wealth of links to other information.

The history of the discovery of the Wnt family of proteins highlights its im-
portance in development. In their Nobel Prize-winning work published in 1980,
Nüsslein-Volhard and Wieschaus discovered several genes that are central to devel-
opment in Drosophila. One of these was a segment polarity gene Wingless (Wg).
The gene was so named because of its phenotype: wingless adult flies, so the gene
has downstream effects past regulation of segment polarity. A couple years later,
Nusse and Varmus discovered a gene in mice where mutations caused breast cancer,
which they named integration 1, or int1. It was later discovered that int1 is highly
conserved across species, including Drosophila, and that it was part of the same fam-
ily asWg. Going forward, this family of genes was referred to asWnt, a combination
of Wg and int.

During development, as we have mentioned in class, neighboring cells need to
communicate to each other for differentiation. Beyond that, they need to sense their
environment; e.g., they need to make changes to gene expression levels depending
on external morphogen concentrations. In order to accomplish this, the “signal”
must cross the cell membrane.

The Wnt pathway, shown in Fig. 2 is one major signaling pathway for accom-
plishing this. The transmembrane proteins Frizzled and LRP (lipoprotein receptor-
related protein) are Wnt’s binding partners. When unbound to Wnt, these proteins
do not interfere with the destruction cycle of β -catenin, an important transcription
factor (more on β -catenin soon). At the center of this destruction cycle is a com-
plex of axin and adenomatous polyposis coli (APC), the latter so named because in
humans it was found to be a colorectal tumor suppressor. This complex is com-
monly referred to as the axin complex. It recuits casein kinase 1 (CK1) and glycogen
synthase kinase 3 (GSK-3), which phosphorylate β -catenin. The phosphorylated
β -catenin is then targeted by β -TrCP, which promotes polyubiquitinization of the
phosphorylated β -catenin, which is then degraded by the proteasome.

WhenWnt is present outside of the cell membrane, it binds to Fizzled and LRP,
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Figure 2: Schematic of the Wnt signaling pathway. Taken from Fig. 8.15 of
Lim, Mayer, and Pawson, Cell Signaling, Garland Science, 2015.

bringing them together as a heterodimer. In this configuration, Frizzled mediates
the phosphorlyation and activation of Dishevelled (DVL, a.k.a. Dsh), which then
has a strong affinity for axin. Furthermore, the tail of LRP is available for phospho-
rylation by CK1 and GSK-3. Thus, this activated Frizzled/LRP complex attracts the
components of the degradation complex, thereby making them less available for de-
grading β -catenin. As a result, stable, unphosphorylated β -catenin can enter the
nucleus. It then binds its coactivators, e.g., the transcription factor LEF1, and turns
on expression of target genes. There are many Wnt-controlled target genes; c-Myc,
a multifunctional regulator gene with roles in cellular transformation, is an example.

3.2 A more detailed look at Wnt signaling

In the Goentoro, et al. paper we are reading in class, we take a more detailed look
of Wnt signaling beyond the cartoon in Fig. 2. The model is based on the work in
Lee, et al. from the very first issue of PLoS Biology. Their schematic of Wnt signal-
ing is shown in Fig. 3. They have labeled protein-protein interactions with arrows,
each one identified with a number, with dashed arrows meaning interactions that
are mediated through other proteins. Importantly, they have labeled subprocesses
within this spaghetti-looking network to give it clarity. The destruction core cycle
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of β -catenin cycles along, provided the equilibrium described by reactions 4 and 5 is
unperturbed. The presence of a Wnt molecule affects this equilibrium by activating
Dishevelled, which affects the reaction 4/5 equilbrium by breaking down the inactive
APC/Axis, GSK-3 complex.

Figure 3: Amore detailedmodel forWnt signaling. Twoheaded arrows indicate
reversible reactions and one-headed indicate irreversible reactions. Dashed ar-
rows indicate reactions that have other mediators of the reactions. From Lee,
et al., PLoS Biology, 1, 116–132, 2003.

This is a complicated picture. Our goal is to mathematize this picture using the
principle ofmass actionwe talked about in the last lecture, getmeasured or estimated
values for the parameters in the dynamical equations, and compute how changes in
Wnt levels affect transcriptional activation.

3.3 Mathematizing the cartoon

As is often done in the study of signal transduction networks, mass action kinetics
are used to model the dynamics. Recalling from last lecture, the rate of a chemical
reaction is proportional to the product of the concentrations of the chemical species
involved. The constant of proportionality is called the rate constant. Importantly,
mass action kinetics do not consider individual reactant molecules, only concentra-
tions of them. Bear in mind also when mass action is valid based on the assump-
tions we made when deriving it. When the number of reactants are small, or indeed
their production is inherently stochastic, as in bursty gene expression, we should
instead use stochastic simulation. Because we are not taking into account spatial ar-
rangements of the molecules in our mass action treatment, we are implicitly making
a well-mixed assumption, meaning that the concentrations are spatially homoge-
neous, or at least effectively so. Clearly, phosphorylatedDishevelled is not uniformly
distributed in space, since it localizes to Frizzled/LRP on the membrane. Nonethe-
less, we assume that the dynamics of diffusion and spatial organization are fast com-
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pared to the chemical kinetics, so we neglect the spatial distribution of molecules.
(In future studies, we will not neglect diffusion, to interesting consequences.)

Despite all of these caveats, mass action kinetics seem to be unreasonably ef-
fective at describing measured dynamics and making testable predictions. We will
therefore employ them in mathematizing the cartoon of the Wnt signaling pathway.

Lee and coworkers write dynamical equations for the entirety of the cartoon,
making simplifying assumptions along the way. For demonstration purposes, we
will mathematize only the β -catenin destruction core cycle with β -catenin input
and phosphorylated β -catenin output. I.e., we will disconnect it from the reversible
phosphorylation of APC (reactions 4 and 5 in Fig. 3). Note that reactions 4 and 5
are obviously crucial for getting the full dynamics of Wnt signaling.

In writing the dynamical equations, we do as Lee, et al. and assign numbers for
the complexes, since “(β -catenin∗/APC∗/Axin∗/GSK3)” is a bit big for a subscript!

number species

3 APC∗/Axin∗/GSK-3

8 β -catenin/APC∗/Axin∗/GSK-3

9 β -catenin∗/APC∗/Axin∗/GSK-3

10 β -catenin∗

11 β -catenin

Now we can write down the differential equations using mass action.

dc3

dt = −k8c3c11 + k-8c8 + k10c9, (3.1)

dc8

dt = k8c3c11 − k-8c8 − k9c8, (3.2)

dc9

dt = k9c8 − k10c9, (3.3)

dc10

dt = k10c9 − k11c10, (3.4)

dc11

dt = k12 − k8c3c11 + k-8c8. (3.5)

We see that

dc3

dt +
dc8

dt +
dc9

dt = 0, (3.6)
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which implies that the quantity c3 + c8 + c9 is conserved. This makes sense, since
this is the total amount of APC/Axin/GSK-3 present. We will call this conserved
quantity cA.

3.3.1 The unique steady state

We can solve for the steady state of this system of ODEs by setting the time deriva-
tives equal to zero and solving. We can subtract equation (3.1) from equation (3.5)
and solve to get that c9 = k12/k10 at steady state. Then, using equations (3.2) and
(3.4), we get c8 = k12/k9 and c10 = k12/k11 at steady state. We then find that at
steady state

c3 = cA − c8 − c9 = cA − k12

k9
− k12

k8
. (3.7)

We finally can solve for c11 at steady state to get

c11 =
k12

k8

(
1 − k-8

k9

)(
cA − k12

k9
− k12

k8

)−1

. (3.8)

So, wehave found a unique steady state. That the steady state exists and is unique
is a useful piece of information in and of itself. We have also found that the steady
state values of all species depend on the production rate of β -catenin, k12.

3.3.2 Numerical solution

Asystemof linearODEs is easily solvednumerically. In solving theODEs, we take an
initial condition of no β -catenin at all in the system, starting onlywithAxin complex.
The total concentration of Axin complex is conserved, with a level of 50 nM, as given
in the Lee, et al. paper. We take all other parameters as those reported in the paper
as well. The two parameters that are not reported there are k-8 and k12. (Actually, k8
is not reported either, but Kd,8 = k-8/k8 is reported.)

It is easiest to see the effects of varying k12 and k-8 using interactive plotting.
I do this, and demonstrate methods for numerically solving ODEs, in this Jupyter
notebook. Youwill need to have aworking Python 3 distributionwith recent versions
of JupyterLab, NumPy, SciPy, Pandas, and Bokeh installed.

A sample of the plot is shown in Fig. 4. In moving the sliders in the interac-
tive plot, we see that k12 serves to set the scale of β -cat and β -cat∗ concentrations.
Varying k-8 sets the total amount of β -catenin. Interestingly, for these parameter
values, the concentrations of all Axin-associated complexes is essentially constant.
We could make this approximation in the dynamics and get simplified equations for
the kinetics.
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Figure 4: The dynamics of the major species in the β -catenin destruction cycle
with all parameters as given in Lee, et al., and k-8 = 1 min−1 and k12 = 100
(nM-min)−1.
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4 Reaction-diffusion based patterns

In class, we will read a paper dealing with bone morphogenic protein (BMP) signal-
ing. In order for biochemical signals to shape an organism, the signaling molecules
themselves3 need to be distributed in a spatially inhomogeneous way. It is not diffi-
cult to imagine that the biochemical cueswould operate in a concentration-dependent
manner; higher concentrations result in stronger signals than lower concentrations.
Such chemical species, which determine cell fate in a developmental context in a
concentration-dependent way, are calledmorphogens.

For this lecture, we will discuss reaction-diffusion mechanisms for generating
spatial distributions of morphogens. This is important both practically and histori-
cally. Before we proceed in this lecture, I will highlight a couple things we will not
cover. First, we will more carefully derive the reaction-diffusion equations when
we get to our lectures on continuum mechanics, so we will more or less state them
without proof here. Second, we will focus on a specific type of pattern, called Turing
patterns, that arise from reaction-diffusionmechanisms. Wewill not talkmuch about
a scaled morphogen gradient that is the subject of the Ben-Zvi et al. paper, but the
fundamental mechanism, simply having diffusing and reacting species, is the same.

4.1 Turing’s thoughts on reaction-diffusion mechanisms for morpho-
genesis

In my favorite paper of all time, Alan Turing (yes, that Alan Turing) laid out a pre-
scription for morphogenesis. He described what should be considered when study-
ing the “changes of state” of a developing organism. Turing said,

In determining the changes of state one should take into account:

(i) the changes of position and velocity as given byNewton’s laws ofmotion;

(ii) the stresses as given by the elasticities and motions, also taking into ac-
count the osmotic pressures as given from the chemical data;

(iii) the chemical reactions;

(iv) the diffusion of the chemical substances (the region in which this diffu-
sion is possible is given from the mechanical data).

He proceeded to state, a few lines later, “The interdependence of the chemical and
mechanical data adds enormously to the difficulty, and attention will therefore be
confined, so far as is possible, to cases where these can be separated.”

3Note that these cues could even have trivial signaling pathways; they can be transcription factors
themselves.
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In the second half of the class, we will attempt this difficult task of bringing to-
gether the chemical and the mechanical. For now, though, we will consider only
chemical reactions and diffusion, and we will see that these together can produce
patterns useful in development.

4.2 Reaction-diffusion equations for a single component

The reaction-diffusion equations are statements of conservation ofmass. Wewill get
into conservation laws in more depth later in the course, but for today we will take
the equation describing the continuum conservation law as given.

Consider a chemical species i with diffusion coefficient Di. Recall that the dif-
fusion coefficient has dimension of L2/T, or length squared over time. The concen-
tration, a function of position x and time t, is ci(x, t). Then, the flux of species i in
the x-direction due to diffusion, ji is given by Fick’s First Law,

ji = −Di
∂ci

∂x . (4.1)

In investigating this equation, we see that flux has units of number of particles per
area per time, N/L2T. So, a flux, sometimes referred to as a current, is the number
of particles that pass through a unit cross sectional area per unit time.

As we will derive in our discussions on continuummechanics, the rate of change
of concentration per unit time due to diffusion is given by the derivative4 of the flux,
as given by Fick’s Second Law.

∂ci

∂t = Di
∂2ci

∂x2 . (4.2)

This functional form makes sense intuitively. Imagine there is a local area of high
concentration. By diffusion, the concentration at this point will drop, and it will rise
away form the high concentration region. The second derivative of the concentration
profile at the peak is negative, so the time derivative is also negative, which means
that the concentration decreases there. The second derivative is positive away from
the peak, so the concentration will rise in those regions.

Let ri(ci) be the rate of production of species i by chemical reaction. Then, the
rate of change of ci due to chemical reaction is

∂ci

∂t = ri(ci). (4.3)

If we couple the chemical reactions with diffusion, we get

∂ci

∂t = Di
∂2ci

∂x2 + ri(ci). (4.4)

4Actually, in 3D, the divergence.
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This generalizes to two or three dimensions and multiple species.

∂ci

∂t = Di ∇2ci,+ri(c), (4.5)

where

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 , (4.6)

in three dimensional Cartesian coordinates, for example, and c is an array of the con-
centrations of all biochemical species.

4.3 Example: the Bicoid gradient

Bicoid was the first morphogen discovered. This morphogen can bind both DNA
and RNA and is involved in transcriptional and translational regulation. It is present
in high concentrations at the anterior regions of aDrosophila embryo and decays away
aswemove toward the posterior. It it thought that the gradient is set up by a reaction-
diffusion process. In the most commonly used model, the reactions are simple.

1. Bicoid degrades with some characteristic degradation rate, γ .
2. Bicoid mRNA is tightly localized to the anterior of the embryo. Bicoid pro-

tein is continuously produced from this localizedmRNA. To take into account
the production and localization, we write this part of the chemical reaction as
q0f(x), where f(x) is a dimensionless function describing the localization of the
bicoid mRNA and therefore the Bicoid source.

Thus, r(c, x) = −γc+q0f(x). As already implied by our definition of Bicoid produc-
tion, we will study this system in one dimension. The complete reaction diffusion
equation is then

∂c
∂t = D ∂2c

∂x2 − γc + q0f(x). (4.7)

Ifwe are interested in the steady stateBicoid concentrationprofile, we set∂c/∂t =
0, giving

∂2c
∂x2 − γ

D c = −q0

D f(x). (4.8)

Let λ =
√

D/γ be the characteristic length scale and let x̃ = x/λ . We then have

∂2c
∂x2 − c = −q0

γ f(x̃). (4.9)
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Importantly, when we nondimensionalize this way, we see that q0/γ sets the scale
of the concentration profile. We see further that, provided the source of Bicoid is
sufficiently localized, λ is the only length scale in the problem and therefore must
set the scale of the concentration gradient.

We can solve this equation in Fourier space as

ĉ(k) = q0

γ
f̂(k)

1 + k2 . (4.10)

We can then easily solve this numerically with FFTs. We have only to specify f(x̃).
We will choose f(x̃) = 1 − θ (x̃ − a), where θ (x) is the Heaviside step function. In
other words, we assume that the bicoid mRNA is localized in a region of size a at the
anterior, given a source of Bicoid protein of width a. The result is shown in Fig. 5
with a = 0.1 (remember, the x-axis is in units of λ .).

0 5
x/

0.0

0.1
c

(q0/ )

Figure 5: The gradient of Bcd.

This method of modeling the source of Bcd is useful, but another commonly
used method is to consider a constant flux of Bcd at the anterior. In this case, the
dynamical equations for the profile are

∂c
∂t = D ∂2c

∂x2 − γc, (4.11)

j(x = 0) = −D ∂c
∂x

∣∣∣∣
x=0

= j0. (4.12)

We also have a no flux condition on the posterior end of the embryo, such that

j(x = L) = −D ∂c
∂x

∣∣∣∣
x=L

= 0. (4.13)
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The no flux conditions ensures conservation of mass; no material can flow out of the
end of the embryo. At steady state, we have

D ∂2c
∂x2 − γc = 0, (4.14)

which has solution

c(x) = c1e−x/λ + c2ex/λ , (4.15)

with again λ =
√

D/γ , and c1 and c2 being constants of integration. Using the
boundary conditions (4.12) and (4.13), we can solve for c1 and c2 to get (after some
algebra) a steady state concentration profile of

c(x) = j0√
Dγ

(
e−x/λ +

cosh x
λ

sinh L
λ

e−L/λ

)
. (4.16)

InDrosophila, theBcd concentration is decays to zero about halfway along the anterior-
posterior axis of the embryo, so L ≫ λ . When this is the case, the second term in
the expression for the concentration profile is small, so

c(x) ≈ j0√
Dγ

e−x/λ . (4.17)

4.4 Scaling of the Bcd gradient

Note that the reaction-diffusion mechanism we considered for the Bicoid gradient
does not allow for scaling. A system exhibits scaling, or is scale invariant, if the pat-
tern does not change if the overall system size changes. Think of it like this: imagine
a two-dimensional square zebra and another one twice its size. If the mechanism
that generates stripes exhibits scaling, these two zebras will have the same number
of stripes. Similarly, flags scale; a tiny American flag has the same pattern as a giant
one.

Mathematically, if we non-dimensionalized x by the total length of the system
(organism), then the length would not appear at all in the system. Clearly this is not
the case for the proposedmodel of Bicoid, since the natural length scale is λ . Indeed,
defining x̃ = x/L, we have

c(x̃) = j0√
Dγ

e−x̃L/λ , (4.18)

with L appearing explicitly in the concentration profile.

In the Ben-Zvi paper, the authors discuss a mechanism for scaling of a similar
gradient, that of BMP in dorsal-ventral patterning in a Xenopus embryo. In your
homework associated with that paper, you will explore other means of scaling.
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4.5 Reaction-diffusion equations for multiple components

As mentioned before, the equations for reaction-diffusion dynamics generalize to
multiple components. Let c = {c1, c2, . . .} be the concentrations of each of n total
species. Then, we can write

∂ci

∂t = Di ∇2ci,+ri(c). (4.19)

Here, we have assumed that the diffusion of each species is independent of that of
all others. The chemical reaction rates, though, may depend on other species.

In the study of many signaling studies, authors often make the well-mixed ap-
proximation, andneglect the diffusion termand any spatial dependence on the chem-
ical components. In the next section, we will see beautiful patterns emerge from
reaction-diffusion with two chemical species. These patterns are calledTuring pat-
terns.

4.6 Turing patterns two-component R-D systems

Consider two chemical species that can undergo diffusion in one dimension (for sim-
plicity). Then, the reaction-diffusion equations for these species are

∂a
∂t = Da

∂2a
∂x2 + ra(a, s), (4.20)

∂s
∂t = Ds

∂2s
∂x2 + rs(a, s), (4.21)

where we have denoted the concentration of the two species to be a and s. To have
a concrete example in mind, since this often helps understanding, we will take

ra = ρa2s − γa (4.22)

rs = β − ρa2s (4.23)

Thismeans that a serves as an activator and s is an inhibitor. We can see this by look-
ing at each term. The ρa2s term means that a is catalyzes its own production, but
needs a substrate enzyme to do so. The appearance of the −ρa2s term means that
the substrate is consumed in this process. The activator undergoes autodegradation
(the −γa term), and the substrate is produced at a constant rate β . We could in-
clude autodegradation of the substrate, but we assume that that process is very slow
compared to the other processes at play and neglect it for simplicity. This model is
called the activator-substrate depletion model, or ASDM.
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4.6.1 Nondimensionalization

As we have already seen, in studying dynamical systems, it is almost always a good
idea to nondimensionalize them. In general, we can choose a units of time to be τ
so that we can nondimensionalize time, t̃ = t/τ . We nondimensionalize position x
as x̃ =

√
Ds τ (a similar length scale that appeared in the Bicoid example). Then, the

reaction diffusion system can be written as

∂a
∂ t̃

= d ∂2a
∂x̃2 + τra(a, s), (4.24)

∂s
∂ t̃

=
∂2s
∂x̃2 + τrs(a, s), (4.25)

where the tildes represent dimensionless quantities and d ≡ Da/Ds is the ratio of
the diffusive rates of the activator and substrate. This already shows us that the ratio
of the diffusion coefficients will be an important parameter.

We are free to choose how we nondimensionalize the concentrations of the acti-
vator and substrate to get fully nondimensional dynamical equations. It is convenient
to nondimenionalize using τ = 1/γ , a = βã/γ , and s = γ 2s̃/β ρ .

Thus, we can write the reaction-diffusion equations as

∂a
∂t = d ∂2a

∂x2 + a2s − a (4.26)

∂h
∂t =

∂2s
∂x2 + μ (1 − a2s), (4.27)

where μ = β 2 ρ/k3, and we have dropped the tildes for notational convenience,
knowing that all variables and parameters are dimensionless. Conveniently, we have
gone from five parameters down to two.5 So, the dynamics are governed by only two
parameters, the ratio of the diffusion coefficients, d, and the ratio of production to
degradation rates μ .

Going forward, in the general treatment of the two-component system, we will
assume everything is properly nondimensionalized and write our dynamical equa-
tions as

∂a
∂t = d ∂2a

∂x2 + ra(a, s), (4.28)

∂s
∂t =

∂2s
∂x2 + rs(a, s). (4.29)

5We could actually arrive at the same dimensionless equations if we had a different ρ values, say
ρ a and ρ s, for production of activator and depletion of substrate, bringing the parameter count from
six down to two.
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4.6.2 Homogeneous steady state

The reaction-diffusion system is at steady state when the time derivatives are zero.
A steady state is homogeneous when the spatial derivatives are also zero. This just
means that the concentration of all chemical species are spatially uniform. A ho-
mogeneous steady state (a0, s0) then satisfies ra(a0, s0) = rs(a0, s0) = 0. For the
ASDM, the homogeneous steady state is a0 = s0 = 1 and is unique.

4.6.3 Linear stability analysis

Imagine the system is in the homogeneous steady state. What happens to this system
if it experiences a small perturbation? This question can be addressed using linear
stability analysis.

Let us expand both sides of our dynamical equations in a Taylor series about
(a, s) = (a0, s0).

∂

∂t(a0 + δa) = d ∂2

∂x2 (a0 + δa) + ra(a0, s0) + ra,a δa + ra,s δs + · · · ,
(4.30)

∂

∂t(s0 + δs) = ∂2

∂x2 (s0 + δa) + rs(a0, s0) + rs,a δa + rs,s δs + · · · , (4.31)

where δa = a − a0 and δs = s − s0. We also defined

ra,s =
∂ra

∂a

∣∣∣∣
a0,s0

, (4.32)

with other parameters similarly defined. Now, ra(a0, s0) = rs(a0, s0) = 0, since
(a0, s0) is a homogeneous steady state, and all derivatives of a0 and s0 are also zero.
Then, to linear order in the perturbation (δa, δs), we have

∂ δa
∂t = d ∂2 δa

∂x2 + ra,a δa + ra,s δs, (4.33)

∂ δs
∂t =

∂2 δs
∂x2 + rs,a δa + rs,s δs. (4.34)

We can write the spatial variation in the perturbation as a Fourier series, with
mode k being δak(t)eikx. Then the dynamical equation for mode k is

dδak

dt = −dk2 δak + ra,a δak + ra,s δsk, (4.35)

dδsk

dt = −k2 + rs,a δak + rs,s δsk. (4.36)
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This can be written in matrix form as

d
dt

(
δak
δsk

)
= A ·

(
δak
δsk

)
, (4.37)

where

A =

−dk2 + ra,a ra,s

rs,a −k2 + rs,s

 (4.38)

is the linear stability matrix. This is now a linear system of equations and the solu-
tion is(

δak
δsk

)
= c1v1eσ 1t + c2v2eσ 2t, (4.39)

where σ 1 and σ 2 are the eigenvalues of A and v1 and v2 are the eigenvectors. So, if
the real part of one of the σ ’s is positive, the kth mode of the perturbation will grow
over time.

Remember that for a 2 × 2 matrix, the eigenvalues are

σ =
1
2

(
tr A ±

√
tr2A − 4det A

)
. (4.40)

So, the real part of the largest eigenvalue is negative if the trace of the linear stability
matrix is negative and its determinant is positive. Otherwise, the largest eigenvalue
has a positive real part and the homogeneous steady state is not stable and patterns
or oscillations can spontaneously emerge.

4.6.4 Consequences of linear stability analysis

We can write the trace and determinant explicitly.

tr A = −(1 + d)k2 + ra,a + rs,s, (4.41)

det A = dk4 − (ra,a + drs,s)k2 + ra,ars,s − ra,srs,a. (4.42)

In the absence of spatial information (and therefore diffusion), the trace is negative
if and only if at least one of ra,a and rs,s is negative. This means that chemical re-
action system by itself is stable. Interestingly, the trace is maximal for the zeroth
mode, which means that an instability arising from the trace becoming positive has
the zeroth mode as its fastest growing. If the determinant is positive at the onset of
the instability (when the trace crosses zero), the eigenvalues are imaginary, which
means that the zeroth mode is oscillatory. This is called a Hopf bifurcation.
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For patterning in a developmental context, we want stable chemical reaction sys-
tems, and we would like patterns to be emergent as the organism grows. Note that
the size of the embryo sets which values of k are allowed; the organism has to be big
enough to fit the modes. So, an organism grows long enough to fit a mode for which
the eigenvalue is positive, and then patterns spontaneously emerge. So, we gener-
ally do not want a Hopf bifurcation in development, which means that a necessary
condition is that at least one of ra,a or rs,s is negative.

Now, the requirement that the chemical reaction system is stable in the absence
of spatial information implies that ra,ars,s − ra,srs,a > 0. The determinant is convex
and quadratic in k2, so it has a minimum when

∂2

∂k2 det A = 2dk2 − ra,a − drs,s = 0. (4.43)

Therefore, the fastest growing mode in the instability is given by

k2
0 =

ra,a + drs,s

2d . (4.44)

This minimum occurs for real k0 only in the presence of positive feedback, or, in
chemical terms, if at least one of the species is autocatalytic, meaning that either
ra,a > 0 or rs,s > 0 or both. We determined earlier that the condition of stable
chemical reactions implies that at least one of these terms is negative, so we now
have that exactly one must be positive and one must be negative. We arbitrarily pick
ra,a to be autocatalyic (hence the name, “activator”).

4.6.5 Linear stability analysis for the ASDM

For the ASDM, we have ra,a = ra,s = 0, rs,a = −2μ , and rs,s = −μ , giving

A =

1 − dk2 1

−2μ −μ − k2

 . (4.45)

The trace and determinant are

tr A = −(1 + d)k2 + 1 − μ (4.46)

det A = (dk2 − 1)(μ + k2) + 2μ = dk4 − (1 − dμ )k2 + μ . (4.47)

So, in order to avoid the Hopf bifurcation, we need μ > 1. The fastest growing
mode is

k2
0 =

1 − dμ
2d . (4.48)
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For k0 to be real, we must have d/μ < 1. Since μ > 1, the condition for a Turing
instability is that d < 1. This can be shown to be the case in general, not just for the
ASDM. So, we have summarized the requirements for a Turing instability.

1. One species is autocatalytic (ra,a > 0) and one is inhibitory (rs,s < 0).

2. The inhibitory species (in theASDMmodel, this is the substrate)must diffuse
more rapidly than the activating species.

The intuition here is that the activator starts producingmore of itself locally. The
local peak starts to spread, but the inhibitor diffuses more quickly that pins the peak
of activator in so that it cannot spread. This gives a set wavelength of the pattern of
peaks.

4.6.6 Turing patterns do not scale

Turing patterns, such as those generated by the ASDM, do not scale because the
wavelength of the pattern, given by the fastest growing mode, k, is independent of
system size. So, if a system is twice as large, it would have twice as many peaks and
valleys in the pattern.
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5 Delta-Notch signaling

During development, cells need to communicate with their nearest neighbors to en-
able differentiation. The Delta-Notch pathway is central to this end. We will see
this when we discuss the Soroldoni, et al. paper, in which Delta-Notch signaling
couples genetic oscillators in neighboring cells.

5.1 Molecular biology of the Delta-Notch signaling system

Delta-Notch signaling provides a mechanism for neighboring cells to communicate
with each other. The molecular mechanism is shown in Fig. 6. Notch is a trans-
membrane protein that is the receptor for another transmembrane protein Delta.
When a cell is expressing Notch and its neighbor is expressing Delta, Delta binds
Notch, which results in a conformational change. This enables proteolytic cleav-
age of Notch, resulting in the Notch intracellular domain (Nicd) detaching from the
membrane complex. Nicd acts as a transcription factor. It is a co-activator with
Mastermind and a co-repressor with Hairless, in addition to having other binding
partners that control gene expression.
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question is, what happens once Nicd enters the nucleus? 
Both the duration of signalling and the identity of target 
genes have impacts on the output of Notch activation, 
so their regulation is of major importance. Together, the 
different mechanisms give a perspective on how this 
simple pathway can be manipulated, but they also show 
that we are still just beginning to understand the full 
complexities of Notch regulation.

Regulation of Notch-ligand activity
Expression of Notch ligands during development is quite 
dynamic and contributes significantly to differential 
activity of the pathway. In some developmental con-
texts, the ligand is produced by a distinct population of 
cells (boundaries/inductive signalling; BOX 2). However, 
under many circumstances, differential ligand transcrip-
tion is not sufficient to explain why certain cells become 
the signal-sending cells. Other post-transcriptional 
mechanisms are clearly at work.

Ubiquitylation and ligand activity. The identification 
of the E3 ubiquitin ligases, Neuralized (Neur) and Mind 
bomb (Mib), that interact directly with Notch ligands 
and are required for ligand activation (FIG. 2) was a strik-
ing and surprising recent discovery14,15. Loss of Neur in 
D. melanogaster or Xenopus laevis and of Mib1 in zebrafish 
results in neurogenic phenotypes16–19. In D. melanogaster, 
mib1 mutants have a later defect of arrested appendage 
(imaginal disc) development (possibly due to persistence 
of maternal protein or redundancy with MIB2). The 
MIB1-associated defects can be rescued by expression of 

Neur, which indicates that these two proteins — although 
they share few structural similarities apart from RING 
domains — can perform the same function20–22. Much 
of the difference between these two E3 families might be 
attributed to their expression patterns and to their regula-
tion (see below), although it remains possible that they 
preferentially interact with different Notch ligands.

In normal cells, the extensive trafficking of Notch lig-
ands through the cell is evident from intracellular puncta 
that are detected in different tissues and animals. This traf-
ficking is compromised in the absence of Neur or Mib, as 
ligands accumulate at the cell surface but are inactive18,21. 
This surprising observation indicates that regulation of 
ligand activity by Neur and Mib is intimately associated 
with endocytosis (FIG. 2) and it requires the ubiquitin-
binding protein Epsin23–25 and probably the J-domain-
containing protein auxilin (which can disassemble 
clathrin coats)26.

Different models have been proposed to explain the 
link between ubiquitylation, endocytosis and ligand 
activity14,15,23. For example, ligand endocytosis could 
generate a ‘pulling force’ on a bound receptor that causes 
a conformational change in the juxtamembrane region27. 
Another possibility is that ubiquitylation promotes ligand 
clustering. Indeed, Notch activation is more effective 
if soluble ligands are clustered through fusion to an 
Fc moiety or through immobilization on plastic28,29. 
A third possibility is that ubiquitylation permits traffick-
ing into an endocytic compartment, which enables ligand 
modification or results in re-insertion of the ligand into 
specific membrane domains. Two observations support 
this model. Segregation of RAB11, a component of the 
recycling endosome, influences signalling in the D. mela-
nogaster sensory organ precursors (SOP). Furthermore, 
mutations in an exocyst component, SEC15, compromise 
SOP Notch signalling30,31.

Paradoxically, some functional ligands in C. elegans 
are secreted (for example DSL-1; REF. 32) and so 
would presumably not be ubiquitylated. However, the 
ubiquitin-binding protein Epsin is also required for 
Notch (LIN-12) signalling activity in this animal, 
implying that mechanisms of ligand activation are 
conserved33. Whatever the mechanism for ligand activa-
tion, regulation of E3 ligases is potentially one signifi-
cant strategy for controlling the activity of the Notch 
pathway, as exemplified by the Bearded-related family 
of small inhibitory polypeptides34,35 (BOX 3). Therefore, 
elucidating the mechanism of ligand activation is of 
prime importance.

Ligand localization. The localization of ligands within 
the cell is important for effective signalling and might 
be influenced by other proteins. For example, Echinoid, 
an immunoglobulin C2-type cell-adhesion molecule, 
colocalizes with Notch and Delta at adherens junctions in 
D. melanogaster.

Genetic interactions indicate that Echinoid functions 
as a positive regulator to promote Notch signalling36. 
Echinoid colocalizes with Delta in endocytic vesicles, 
and Echinoid overexpression depletes Delta from 
the membrane. Therefore, it is possible that Echinoid 

Figure 1 | The core Notch pathway. Binding of the Delta ligand (green) on one cell to 
the Notch receptor (purple) on another cell results in two proteolytic cleavages of the 
receptor. The ADAM10 or TACE (TNF-α-converting enzyme; also known as ADAM17) 
metalloprotease (yellow) catalyses the S2 cleavage, generating a substrate for S3 
cleavage by the γ-secretase complex (brown). This proteolytic processing mediates 
release of the Notch intracellular domain (Nicd), which enters the nucleus and interacts 
with the DNA-binding CSL (CBF1, Su(H) and LAG-1) protein (orange). The co-activator 
Mastermind (Mam; green) and other transcription factors (see also FIG. 4) are recruited to 
the CSL complex, whereas co-repressors (Co-R; blue and grey) are released.
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Figure 6: Sketch of the molecular details of Delta-Notch signaling. The insides
of neighboring cells are shown in brown and the intercellular space is shown in
light blue. Taken from Bray, Nat. Rev. Mol. Cell Biol., 7, 678–689, 2006.

Importantly, Nicd represses production of Delta. So, a cell that has a lot of
cleaved Notch will stop producing Delta. Thus, a cell expressing a lot of Delta will
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suppress Delta expression in the neighboring cell by activating Notch in the neigh-
bor. A schematic of this process is shown in Fig. 7.

Figure 7: Schematic of nearest-neighbor cell differentiation by Delta-Notch.
Delta expressed by the bottom cell activatesNotch in the top cell. The activated
Notch in the top cell suppresses Delta in the top cell. Because there is no Delta
on the surface of the top cell, Notch is inactive in the bottom cell. Since Notch
is inactive, Delta continues being expressed in the bottom cell.

So, the Delta-Notch system enables a cell to access a cell fate and instruct its
neighbors not to access the same fate.

5.2 Mathematical analysis of the Delta-Notch system

We will develop a simple model to describe the dynamics of the Delta-Notch sig-
naling between two nearest-neighbor cells. Let N1 be the number of active Notch
molecules in cell 1 and D1 be the number of Delta molecules, with N2 and D2 simi-
larly defined. We then write the dynamics as

dN1

dt = F(D2)− γN N1 (5.1)

dD1

dt = G(N1)− γD D1 (5.2)

dN2

dt = F(D1)− γN N2 (5.3)

dD2

dt = G(N2)− γD D2. (5.4)

We have defined γN and γD to be the respective autodegradation rates of Notch and
Delta. The function F(D) describes how the Delta level in a neighboring cell affects

30



theNotch level. This function should bemonotonically increasing, sincemoreDelta
implies more active Notch. The function G(N) describes how the level of active
Notch in a cell affects its Delta level. Since Notch represses Delta, this should be
monotonically decreasing.

5.2.1 Nondimensionalization

We will nondimensionalize these dynamical equations. this is the process of re-
defining variables and parameters so that each term in the system of ODEs has no
units. This also usually results in driving down the total number of parameters. We
define the following, with dimensionless quantities being either lowercase ormarked
with a tilde.

t = τ t̃ (5.5)

G(N2) = G0 g(N2/N0) (5.6)

F(D2) = F0 f(D2/D0) (5.7)

N1 = N0n1 (5.8)

D1 = D0d1, (5.9)

with other variables similarly defined. After substitution and rearrangement, we get

ṅ1 =
F0 τ
N0

f(d2)− γN τn1 (5.10)

ḋ1 =
G0 τ
D0

g(n1)− γD τd1 (5.11)

ṅ2 =
F0 τ
N0

f(d1)− γN τn2 (5.12)

ḋ2 =
G0 τ
D0

g(n2)− γD τd2, (5.13)

where the over-dot indicates differentiation by t̃. Now, we choose τ = γ−1
N and

N0 and D0 such that limd→∞ f(d) = 1 and g(n = 0) = 1. We further choose
F0 = N0/τ and G0 = D0/τ . With these choices, we have

ṅ1 = f(d2)− n1 (5.14)

ḋ1 = ν (g(n1)− d1) (5.15)

ṅ2 = f(d1)− n2 (5.16)
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ḋ2 = ν (g(n2)− d2) , (5.17)

where we are left with a single parameter, ν = γD/γN, the ratio of the decay rates of
Delta and Notch.

5.2.2 Homogeneous steady state

We are interested in knowing if these two neighboring cells can differentiate from
each other. We therefore wish to find a homogeneous steady state, n1 = n2 = n0
and d1 = d2 = d0, and test its stability. If this homogeneous steady state is unstable
(i.e, if the dynamical system “runs away” from the homogeneous steady state upon
a small perturbation), we expect the cells to be able to differentiate. If it is stable,
they cannot spontaneously differentiate.

To find the steady state, we solve the systemof equationswith all time derivatives
set to zero. I.e., we wish to solve

f(d0)− n0 = 0, (5.18)

g(n0)− d0 = 0. (5.19)

The first equation gives n0 = f(d0), so the second equation tells us we must have
g(f(d0)) = d0. We will write g(f(x)) as gf(x), where gf(x) is called the composi-
tion of the functions g and f. Now, f(x) is a monotonically increasing function and
g(x) is a monotonically decreasing function, so gf(x) is a monotonically decreasing
function. So we have that gf(d0) is monotonically decreasing toward zero while the
function h(d0) = d0 is monotonically increasing from zero. This means that these
two functions cross exactly once, so there exists a unique homogeneous steady state.

5.2.3 Linear stability analysis

To test the stability of the homogeneous steady state, we turn to linear stability
analysis. The basic idea is to linearize the right hand sides of theODEs by expanding
them in Taylor series to first order about the homogeneous steady state. The result
is a linear dynamical system which is readily solved by computing the eigenvalues.
If any of the real parts of the eigenvalues is positive, the homogeneous steady state
is unstable, since the concentration of one of the species will, at least close to the
homogeneous steady state, grow exponentially.

Let n0, d0 be the homogeneous steady state. We take a small perturbation off of
this steady state such that

n1 = n0 + δn1 (5.20)
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d1 = d0 + δd1 (5.21)

n2 = n0 + δn2 (5.22)

d1 = d0 + δd2, (5.23)

where u ≡ (δn1, δd1, δn2, δd2) is a small perturbation about the homogeneous
steady state. We expand the functions f(d) and g(n) to first order in the pertur-
bation.

f(d2) = f(d0) + f ′(d0)δd2 +O
(
(δd2)

2) , (5.24)

g(n1) = g(n0) + g ′(n0)δn1 +O
(
(δn1)

2) , (5.25)

and so on. We define f0 = f ′(d0) and g0 = g ′(n0) for notational convenience. Then,
to linear order in the perturbation, we have

d
dt δn1 = f0 δd2 − δn1 (5.26)

d
dt δd1 = ν (g0 δn1 − δd1) (5.27)

d
dt δn2 = f0 δd1 − δn2 (5.28)

d
dt δd2 = ν (g0 δn2 − δd2) . (5.29)

This can be written in matrix form as

d
dt u = A · u, (5.30)

with

A =


−1 0 0 f0
νg0 −ν 0 0
0 f0 −1 0
0 0 νg0 −ν

 . (5.31)

It is useful to remember that the sum of the eigenvalues of a matrix is given by the
trace and the product of the eigenvalues is given by the determinant.

tr A = −2(1 + ν ) (5.32)

det A = ν 2 (1 − f 2
0 g2

0
)
. (5.33)

We can directly compute the eigenvalues by computing the characteristic polyno-
mial.

(1 + λ)2 (ν + λ)2 − ν 2f 2
0 g2

0 = 0 (5.34)
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Therefore, one pair of eigenvalues is given by the solutions of

(1 + λ) (ν + λ) = νf0 g0, (5.35)

and the other pair by solutions of

(1 + λ) (ν + λ) = −νf0 g0. (5.36)

These are all quadratic equations, which can be solved to give

λ1 = −1 + ν
2

(
1 +

√
1 − 4ν

(1 + ν )2 (1 − f0 g0)

)
, (5.37)

λ2 = −1 + ν
2

(
1 −

√
1 − 4ν

(1 + ν )2 (1 − f0 g0)

)
, (5.38)

λ3 = −1 + ν
2

(
1 +

√
1 − 4ν

(1 + ν )2 (1 + f0 g0)

)
, (5.39)

λ4 = −1 + ν
2

(
1 −

√
1 − 4ν

(1 + ν )2 (1 + f0 g0)

)
. (5.40)

Clearly, eigenvalues λ1 and λ3 have negative real parts. For λ2 to have a positive real
part, we must have

f0 g0 > 1. (5.41)

This is not possible since recall that f0 > 0 and g0 < 0, so f0 g0 < 0. So, the only
eigenvalue that can have positive real part is λ 4. This happens when

f0 g0 < −1. (5.42)

This condition must be met for the homogeneous steady state to be unstable. This
tells us that either f(d), g(n), or both must be steep functions near the steady state.
This implies cooperativity, which we will discuss more explicitly in a simple limit in
section 5.2.5.

5.2.4 Linear stability in the ν ≫ 1 regime

To make more analytical progress, we consider the case where ν ≫ 1, which is to
say that the Delta dynamics are much faster than the Notch dynamics. We note that
the terms multiplying ν in equations (5.15) and (5.17) must be of order ν−1 ≈ 0,
since all of the variables have been scaled to unity. This means that g(n1) ≈ d1 and
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g(n2) ≈ d2. With this approximation, we can reduce the dynamical system to two
equations.

ṅ1 = fg(n2)− n1 (5.43)

ṅ2 = fg(n1)− n2. (5.44)

We can again perform linear stability analysis, defining now

fg0 ≡
dfg(n)

dn

∣∣∣∣
n=n0

. (5.45)

We get

d
dt

(
δn1
δn2

)
=

(
−1 fg0
fg0 −1

)
·
(

δn1
δn2

)
. (5.46)

The sum of the eigenvalues of this linear stability matrix is λ1 + λ2 = −2, implying
that at least one of the eigenvalues has a negative real part. The product of the eigen-
values is given by the determinant, or λ1 λ2 = 1 − (fg0)

2. Since at least one of the
eigenvalues has a negative real part, we must have λ1 λ2 < 0 to have an instability.
So, we must have (fg0)

2 > 1, or fg0 < −1, since fg0 < 0. This tells us that the
composite function fg(x)must be steep.

5.2.5 Cooperativity in the ν ≫ 1 regime

We will model f(x) and g(x) as Hill functions to gain some more insights into the
requirements for instability.

f(x) = xnf

a + xnf
, (5.47)

g(x) = b
b + xng

. (5.48)

Then, we have

fg(x) = [b/(b + xng)]nf

a + [b/(b + xng)]nf . (5.49)

From this, we can compute fg0 as

fg0 =
dfg
dx

∣∣∣∣
x=x0

= −
anf ng

b
xng−1

0
[
b/(b + xng

0 )
]nf+1(

a +
[
b/(b + xng

0 )
]nf
)2 , (5.50)
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where we are calling x0 the homogeneous steady state. We compute the differential
of this function for nf = ng = 1.

fg0 = − a2b2

(b + ab + ax0)2 . (5.51)

Thus, we have that fg0 can never have a magnitude greater than unity. Therefore, if
nf = ng = 1, we cannot have an instability. So, a requirement for instability of the
Delta-Notch system in the limit where Delta dynamics are much faster than Notch
dynamics is that we must have cooperativity, i.e., nf > 1, ng > 1, or both.
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6 Segmentation clocks

The precursor to vertebrae are called somites, illustrated in Fig. 8. In this lecture, we
explore the mechanisms for somitogenesis, the process by which these somites are
formed.

Figure 8: Somites in a developing chick embryo. Image taken from Phillips, et
al., Physical Biology of the Cell, 2nd Ed., Fig. 20.21, 2012.

6.1 Basics of somitogenesis

It is believed that somitogenesis happens as a result of oscillatory gene expression and
arrest of this oscillation at a specified position along the anterior-posterior axis of the
developing embryo. At the tail end of the embryo, cells in the presomitic mesoderm
(PSM) (Fig. 9) exhibit oscillatory expression of certain genes. In zebrafish, these
genes are her1 and her7, related to the pair-rule gene hairy in Drosophila (hence the
name; her is short for hairy-related). As the her genes oscillate, the organism is grow-
ing, so the PSM keeps moving posteriorly. If the oscillating cells are far enough from
the posterior, they arrest. The position where the arrest occurs is called the arrest
front. If a cell is in a peak of the her oscillation when it arrests, it will have one fate,
but if it is in a valley, it will have another fate. Thus, the alternating structure of the
somites is formed. Note that the distance between the arrest front and the posterior
end of the organism may fluctuate, but in many models is taken to be constant.

6.2 The clock-and-wavefront model

The clock-and-wavefront model was proposed by Cooke and Zeeman in 1975 and
was one of the first models put forward to describe somitogenesis. This model is
based on the following assumptions.

a) All cells in the PSM are oscillating.
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Figure 9: A schematic of the clock and wavefont model for somitogenesis. Im-
age taken from Phillips, et al., Physical Biology of the Cell, 2nd Ed., 2012.

b) Coupling between the cells induces synchrony in oscillation, setting the oscil-
lation frequency to be T.

c) Waves arrest at a front at the anterior.

d) The arrest front moves posteriorly with a speed v.

In this model, since all cells in the PSM are oscillating in unison, meaning that they
have both the same frequency and the same phase, the dynamics of the extension of
the PSMduring growth is irrelevant. Only themotion of the front into the oscillating
cells is important.

An important conclusion of this model is that the size of the somites is s = vT.
This is the distance traveled by the arrest front between peaks in the oscillators. The
model can be tested indirectly bymeasuring somitogenesis over a time interval of set
length, as shown in Fig. 10. We measure the length of the region of somites, Ds, and
the position of the arrest front, Wa and Wb and the beginning and end of the time
interval, respectively.

The speed of the arrest front is v = (Wb − Wa)/n, where n is the number of
somites that are formed in the interval. (Developmental time is usually measured
in units of number of somites.) The rate of somite formation is Ds/n. If the clock-
and-wavefront model is true, then the rate of somite formation and the speed of the
arrest front should be equal, so we should have Ds = (Wb − Wa). This was tested
in Gomez et al., Nature, 454, 335–339, 2008, and the result is shown in Fig. 11.
For each of four species, the ratio of the rate of arrest front movement to that of
the formation of somites, (Wb − Wa)/Ds, is approximately unity, suggesting that
the oscillation frequency is tuned with the front velocity, as given by the clock-and-
wavefrontmodel. However, note that this ratio is decidedly belowunity for zebrafish.

The clock and wavefront model also makes valuable predictions about the size
and number of somites in mutants. Consider first the ratio of the sizes of somites in
wild type and mutant embryos. Here, we assume the mutations affect the genetic
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Figure 10: A schematic of a measurement of the arrest front speed and rate of
somitogenesis in a corn snake embryo. The gene MSGN1 is stained to signify
the location of the PSM. The arrest front is at the anterior edge of this stained
region. The somites are also clearly visible. Wa and Wb are the positions of
the arrest front at the beginning and end of a developmental time interval, and
Ds is the length of somite region formed during the same time interval. From
Phillips, et al., Physical Biology of the Cell, 2nd Ed., 2012, adapted from Gomez
et al., Nature, 454, 335–339, 2008.

oscillations and not the speed of the arrest front. Specifically, for the purposes of
discussion, we will take Tmut > Twt.

smut

swt
=

vTmut

vTwt
=

Tmut

Twt
. (6.1)

So, we get larger somites with slower oscillations. Now, consider the ratio of the
number of somites over the developmental time Tdev.

nmut

nwt
=

Tdev/Tmut

Tdev/Twt
=

Twt

Tmut
, (6.2)

which says that we get fewer somites.

6.3 PSM cells do not oscillate in unison

Despite some indirect experimental evidence supporting the original clock-and-wavefront
model, such as in the Gomez et al. paper, direct observations of her1 dynamics in the
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Figure 11: The ratio of the rate of the arrest front movement (Vd) to that of
formation of somites (Vs). For all four species, this ratio is approximately unity.
Adapted from Gomez et al., Nature, 454, 335–339, 2008.

PSM show that the gene expression in the cells does not oscillate in unison. This was
seen before by fixing and staining embryos at certain time point, but was more firmly
demonstrated when Soroldoni, et al. (Science, 345, 222–225, 2014) developed a re-
porter for her1 in vivo. As seen in Fig. 12, the expression of her1 is not uniform.
Further, we see that kinematic waves of her1 expression travel toward the anterior
where they are arrested.6

genetic oscillations determines the timing of
segmentation.
In sequentially segmenting animals, the un-

segmented tissue exhibits patterns of oscillating
gene expression reminiscent of waves that travel
from the posterior to the anterior, where they
arrest. These waves are kinematic and emerge at
the tissue level from the coordinated output of
cellular genetic oscillators (2–5). This situation is
similar to news ticker displays in which amoving
pattern is caused by on-and-off switching of in-
dividual stationary lamps (6). The sequential

arrest of the kinematic waves is thought to pre-
figure the position and set the period of segment
formation (7). During vertebrate segmentation,
the onset and arrest of thesewaves are controlled
by a complex genetic network that acts in the
unsegmented presomitic mesoderm (PSM). The
PSM gives rise to the somites, which are the pre-
cursors of adult segments (vertebrae, ribs, and
associated skeletal muscles). Since its discovery,
it has been generally assumed that this network,
termed the “segmentation clock,” resembles a
genetic clock with a single, well-defined period
(3). In this simplified picture, both the onset
and arrest of the kinematic waves happen with
the same period, which is identical to that of
segment formation (6–9). However, these fun-
damental assumptions have not been tested
systematically because it has proven difficult to
visualize oscillating gene expression in real time
and simultaneously quantify the timing of mor-
phological segmentation over a substantial time
scale (2, 4, 10).
To this end, we used a transgenesis approach

to generate a reliable reporter for the oscillating
gene her1, named Looping (fig. S1), and devel-
oped a multidimensional time-lapse setup de-
signed to systematically compare the periods of
morphological segmentation and genetic oscilla-

tions in multiple zebrafish embryos (Fig. 1A).
Our imaging setup was sensitive enough to de-
tect reporter oscillations in real time and fast
enough to simultaneously record segment forma-
tion in a population of 20 embryos (Fig. 1B and
movie S1). Embryonic growth was not affected
by our mounting technique, which ensured that
wild-type and transgenic siblings developed nor-
mally (fig. S2). With this approach, we observed
that multiple kinematic waves (Fig. 1C, color ar-
rowheads, and movie S1) travel from the poste-
rior to anterior PSM at each point in time. As
expected, we found that the arrest of reporter
oscillations in the anterior PSM coincided with
the formation of every new segment (Fig. 1B,
arrowhead, and movie S2) (2, 7, 11). As the waves
travel along the tissue, their wavelength shortens
(Fig. 1C, arrows); thus, the wave pattern can be
characterized by the number of waves and by
their wavelengths.
To quantify the timing of onset and arrest of

kinematic waves, we locally measured the re-
porter expression in the anterior and the
posterior PSM (Fig. 1D, circles). From previous
studies, it was unclear whether the posterior
PSM oscillates (2, 12). We found that both re-
gions oscillate, although with different report-
er amplitudes (Fig. 1D, bottom diagram). We
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Fig. 1. Oscillations in the anterior and posterior presomitic
mesoderm (PSM) have different periods. (A) Mounting of
zebrafish embryos for multidimensional imaging. Each time-
lapse experiment consists of 20 xy positions with a z stack
(6 slices at 20 mm intervals) to keep the PSM in focus. (B)
Snapshots from Looping, a transgenic reporter of the oscil-
lating gene her1, reveal that Her1::YFP (yellow fluorescent
protein) fusion protein is confined to the PSM. The white
arrowhead marks the most recently formed somite/segment
boundary. Scale bar, 100 mm; LUT, high (white) to low (blue)
reporter intensity; BF, brightfield. (C)Multiple kinematic waves
(different colored arrowheads) emerge from the posterior
PSM (“P”) and travel anteriorly (“A”) till they arrest (white
arrowhead). (D) A region of interest (ROI) interpolator is used
to measure the average reporter intensity in the posterior
(inset, green circle) and anterior (inset, red circle) PSM. Both
regions oscillate but experience a different number of oscil-
lations (annotated with peak number). (E) Periods of mor-
phological segmentation (“S”) and anterior (“A”) oscillations
are identical, whereas posterior (“P”) oscillations occur sig-
nificantly slower (~9%). Four independent experiments (N),
forty individual embryos (n),Whiskersmin/max (t test,Welch
correction, ***P < 0.0001).

RESEARCH | REPORTS
Corrected 14 July, 2014; see full text.

Figure 12: Image of her1 expression over time in a developing zebrafish em-
bryo. Waves of expression (each wave is identified and color coded with arrow-
heads) travel toward the posterior where they are arrested. Figure taked from
Soroldoni, et al., Science, 345, 222–225, 2014.

Tounderstandhowkinematicwaveswork, I borrow the analogy from theSoroldoni
paper. Think about a stock ticker. Each light flicks on and off and there is some cou-
pling to neighboring lights. The result is a movement of an image of lights across the
ticker, even though each light bulb is stationary.

Since the observation of kinematic waves automatically eliminates the clock-and-
wavefront hypothesis with a uniform oscillation frequency, we need to take a more

6This is better seen through a movie of this process, http://science.sciencemag.org/
highwire/filestream/595541/field_highwire_adjunct_files/0/1253089s1.
avi, though the link may not work for you because Science is a closed journal.
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careful look at the oscillators.

6.4 Generic description of oscillatory gene expression in somitogene-
sis

Tomore generically describe somitogenesis, Soroldoni et al. describe the oscillations
in the PSMgenerically as a function of space and time. Todo this, we define a generic
description of an oscillatory function. For any function Q(x, t) that is oscillatory in
time, we can write the dynamics at position x as

Q(x, t) = q0 + q(x, t) cos ϕ(x, t), (6.3)

where ϕ(x, t) is the phase of the oscillation, q0 is the baseline, and q(x, t) is the am-
plitude. The parameters q0 and q(x, t) capture the strength of the oscillatory signal,
while the frequency information is captured in the phase. As an example, we get a
pure cosine wave that is uniform in space if ϕ(x, t) = ωt, and a pure sine wave if
ϕ(x, t) = ωt − π/2. The period of both of these waves is T = 2π/ω .

Our analysis will focus on the phase of the oscillations, which is a result of the
temporal dynamics of gene expression and coupling to neighboring cells. Let the x-
position of the posterior end of the PSMbe x = 0 and let a(t) be the x-position of the
anterior end of the PSM (the arrest front). We define ϕA = ϕ(a(t), t) as the phase
of the oscillators at the anterior and ϕP = ϕ(0, t) as the phase of the oscillators at
the posterior. Then, the number of kinematic waves, K, in the PSM is given by the
total difference in phase, modulo 2π .

K =
ϕP − ϕA

2π (6.4)

Note that we do not wrap the phase shift here, i.e., ϕ = 2π is not the same as
ϕ = 4π .

To investigate how the number of kinematic waves changes in time, we compute
the time derivative.

dK
dt =

1
2π

(
dϕP
dt − dϕA

dt

)
=

ωP − ωA

2π =
1
Tp

− 1
TA

, (6.5)

where we have defined

ω =
∂ϕ
∂t . (6.6)

This tells us that if the number of kinematic waves changes in time, then the period
at the anterior is different than that at the posterior. This can be observed experi-
mentally, and is one way of seeing a non-flat phase profile across the PSM.
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I just used thewordphaseprofile loosely tomeanhow the phase of the oscillators
varies across the PSM.Let’s codify thatmore concretely. We define the phase profile
ψ(x, t) as

ψ(x, t) = ϕ(x, t)− ϕP(t), (6.7)

which is simply how the phase varies as we move away from the posterior. Then, we
can write

ωA =
dϕ
dt =

dϕP
dt +

dψ(a(t), t)
dt

= ωP +
∂ψ (a(t), t)

∂t +
da
dt

∂ψ (a(t), t)
∂x

= ωP + ωW + ωD, (6.8)

So, the difference in oscillation frequency between the anterior and posterior is ωA−
ωP = ω W + ω D. We have defined ω W ≡ ∂ψ (a(t), t)/∂t. This is the change
in frequency that is inherent to the oscillators. Soroldoni, et al. call 2π/ω W the
“dynamic wavelength,” which gives the change of the wavelength of the kinematic
waves in time. We have also defined

ω D =
da
dt

∂ψ (a(t), t)
∂x . (6.9)

This describes how the anterior phase differs from the posterior due to the Doppler
effect. Since the PSM is shortening during development, the anterior is rushing into
the kinematic waves, so the observed frequency is higher. Specifically, the speed of
the observer is da/dt and the traveling wave has a wavelength of 2π(∂ψ/∂x)−1.

6.5 Assessment of models in terms of ωA and ωP

Soroldoni, et al. can measure the phase profile and can therefore deduce ω D and
ω W. What do different models predict?

Clock-and-wavefront model. In this model, ϕ (x, t) = ωt, since all oscillators
oscillate in unison with a constant frequency ω . Thus, ϕ (x, t) = ϕP(t) ∀x, so
ϕ (x, t) = 0. Thus, ω D = ω W = 0 and ωA = ωP.

Steady-state PSM. One might consider the scenario where the PSM is in steady
state. That is to say that it does not grow or shrink, a(t) = a0, and there is no
modulation of the phase portrait, ϕ (x, t) = ωt + ψ (x). In this case, ψ is not a
function of time, so ω W = 0. The length of the PSM, a, is also not a function of
time so, da/dt = 0, meaning that ω D = 0. So, again, we have ωA = ωP under this
model.
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Scalingwave pattern. In thismodel, the phase profile is a time-independent func-
tion of the normalized PSM length.

ϕ (x, t) = ωt + ψ (x/a(t)) , (6.10)

and we may have da/dt ̸= 0. Then, we have

ω W =
∂ψ (x/a(t))

∂t = −1
a

da
dt

∂ψ
∂(x/a(t))

∣∣∣∣
x/a(t)=1

, (6.11)

and

ω D =
da
dt

∂ψ (x/a(t))
∂x =

1
a

da
dt

∂ψ
∂(x/a(t))

∣∣∣∣
x/a(t)=1

, (6.12)

So, in this case, ω D and ω W have equal magnitude and opposite sign. Thus, we
again have ωA = ωP. Therefore, if we find experimentally that dK/dt ̸= 0, we must
have TP ̸= TA, so therefore ωP ̸= ωA, and none of these three models can be true.
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7 Good talks: structuring your talk

Lecture 7was on giving good talks; there are no lecture notes. The slides are available
here.
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9 Continuum mechanics I: conservation of mass

As we move into the mechanics of morphogenesis, we need to develop a mathemat-
ical framework, similar to our use of mass action kinetics in our studies of signaling.
We have already seen some of the results of this analysis in our discussion of Turing
patterns and the Ben-Zvi, et al. paper, where we already used some results pertain-
ing to diffusive transport that we will soon derive. Wewill discuss this more formally
now.

Wewill beworking up to a hydrodynamic theory for active viscous nematic fluids,
which we will use to model the actomyosin cortex in a developing C. elegans embryo.
For a recent review of the theory of these types of complex materials, see this paper
by Jülicher, Grill, and Salbreux.

9.1 Assumptions about continua

We will be treating cells and tissues as continua, meaning that we do not consider
discrete molecules, or in some cases discrete cells. When is this a reasonable thing
to do? When can we neglect molecular details?

We can think of an obvious example where it is ok to treat objects as continua.
Let’s say we are engineering a submarine. We want to design its shape and propeller
such that it moves efficiently through water. Do we need to take into account the
molecular details of the water? Definitely not! We only need to think about bulk
properties of the water; its density and viscosity (both of which are temperature de-
pendent). We can also define a velocity of water as a continuum as opposed to think-
ing about the trajectories of every molecule. So, clearly there are situations where
the continuum treatment of a fluid is valid and in fact preferred.

Similarly, we do not need to know all of the details of the metal of the submarine.
We would again need to know only bulk properties, such as its stiffness and thermal
expansivity. We can also treat solids as continua.

There are also cases where we cannot use a continuum approximation. For ex-
ample, if we are studying an aquaporin, we might want to analyze the electrostatic
interactions as a single water molecule passes through. Clearly here we need to have
a molecular/atomistic description of the system, at least of the water molecule itself.

So, when can we use a continuum description instead of a discrete one? We will
have a more precise answer for this as we develop the theory in a moment, but for
now,we’ll just say thatweneed plenty of particles so thatwe can average their effects.
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9.2 A preliminary: indicial notation

In order tomore easilywork ourway through our treatment of continuummechanics,
wewill introduce indicial notation, which is a convenientway towrite down vectors,
matrices and differential operators. This technique was invented by Albert Einstein.

Before plunging in, I note that we shouldn’t trivialize or fear new notation. To
quote Feynman, “We could, of course, use any notation we want; do not laugh at
notations; invent them, they are powerful. In fact, mathematics is, to a large extent,
invention of better notations.”

The main concept behind indicial notation is a tensor. A tensor is a system of
components organized by one or more indices that transform according to specific
rules under a set of transformations. Tensors are parametrization-independent ob-
jects. The rank of a tensor is the number of indices it has. To help keep things
straight in your mind, you can think of a tensor as a generalization of a scalar (rank 0
tensor), vector (rank 1 tensor) and a matrix (rank 2 tensor).7 That’s a mouthful, and
quite abstract, so it’s better to see how they behave with certain operations.

9.2.1 Contraction

The contraction of a tensor involves summing over like indices. For example, say
we have two rank 1 tensors, ai and bi. Then, their contraction is

aibi = a1b1 + a2b2 + · · · . (9.1)

It is convention in indicial notation to always sum over like indices. So, if ai and
bi represent vectors in Cartesian three-space, which they usually will in our studies,
they have components like (ax, ay, az). Then aibi = axbx +ayby +azbz is the vector
dot product. This relates to vector notation you might already be used to seeing.

aibi = a · b. (9.2)

Note that in indicial notation, ai represents the perhaps more familiar a. Note also
that the tensor operations we are defining are parametrization independent, and they
need not, in general, represent Cartesian coordinates.

We have just seen that contraction of two rank one tensors gives a rank zero ten-
sor. Similarly, we can contract a rank two tensor with a rank one tensor, which is
equivalent to a matrix-vector dot product.

Aijbj = ci. (9.3)

7We will not talk about covariant and contravariant tensors in this class, since they are not neces-
sary for what we are studying.

47



Since we summed (or contracted) over the index j, the index i remains. It is helpful
to write it out for the case of i, j ∈ {x, y, z}.

Aij =

Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz

 , (9.4)

and bj = (bx, by, bz). Then, we have

ci = Aijbj =

Axxbx + Axyby + Axzbz
Ayxbx + Ayyby + Ayzbz
Azxbx + Azyby + Azzbz

 . (9.5)

This is equivalent to A · b in notation you may be more accustomed to. Note that
Aijbi is equivalent to AT · b. Stated explicitly, with indicial notation on the left hand
side and vector notation on the right hand side,

entry i of Aijbj = (A · b)i, (9.6)

entry j of Aijbi = (AT · b)j. (9.7)

9.2.2 Direct product

We can also make higher order tensors from lower order ones. For example, aibj
gives a second order tensor.

aibj =

axbx axby axbz
aybx ayby aybz
azbx azby azbz

 . (9.8)

Comparing to vector notation, entry i, j of aibj = (a ⊗ b)ij.

9.2.3 Differential operations

You have probably seen the gradient operator before. In Cartesian coordinates, it is

∇ =

(
∂

∂x ,
∂

∂y ,
∂

∂z

)
. (9.9)

In indicial notation, this is ∂i. So, the gradient of a scalar function f is ∂i f , which is a
rank 1 tensor, as wewould expect. In perhapsmore familiar notation, wewould write
this as∇f . The divergence of a vector vi, commonly written as∇ · v, is ∂ivi. This is
a contraction of the differential operator with the vector. The Laplacian of a scalar,
commonly written as∇2 f or Δ f , is ∂i∂i f .

48



9.2.4 Trace and matrix multiplication

We can define the trace of a rank 2 tensor as the sum of the diagonal elements.

Aii = Axx + Ayy + Azz. (9.10)

Note that we could multiply matrices and then take the trace. Comparing to familiar
notation,

AijBij = tr(AT · B). (9.11)

In other words, the contracted indices tell us what to sum. Simple matrix multipli-
cation is

AijBjk = (A · B)ik. (9.12)

9.2.5 The Levi-Civita symbol

We represent cross products with the Levi-Civita symbol. This is defined as

εijk =


1 if ijk = xyz, yzx, zxy

−1 if ijk = zyx, yxz, xzy
0 otherwise.

(9.13)

Thus, we can represent the vector cross product as

entry i in εijkujvk = (u × v)i. (9.14)

The curl of a vector field is

entry k in εijk∂ivj = (∇× v)k = (curl v)k. (9.15)

9.3 Conservation of mass

Now that we have the mathematical notation in place, we will proceed to derive con-
servation laws for a continuous material. To do this, consider a piece of space within
a material, which we will call a volume element. The volume element has an out-
ward normal vector ni, as shown in Fig. 13.

Now, let’s say that this volume element hasmaterial in it with a density ρ . Then,
the total mass of material inside the volume element is

m =

∫
dV ρ , (9.16)
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ni

Figure 13: Drawing of a three-dimensional volume element with outward nor-
mal ni.

where the integral is over the volume. Now, the time rate of change of mass in the
volume must be equal to the net flow of mass into the control volume. The mass
flow rate out of control volume per unit area is ni(ρvi), where vi is the velocity of
material. So, the rate of change of mass is

∂t

∫
dV ρ = −

∫
dS ni(ρvi), (9.17)

where the second integral is over the surface of the control volume.

We will now make use of the divergence theorem, also known as Gauss’s theo-
rem or the Gauss divergence theorem, which states that for any closed surface, any
continuously differentiable tensor field Fi satisfies∫

dV ∂i Fi =

∫
dS ni Fi. (9.18)

This generalizes for higher rank tensor fields. E.g.,∫
dV ∂j Tij =

∫
dS nj Tij, (9.19)

for a rank 2 tensor. Taking our tensor field as ρvi, we apply the divergence theorem
to get

∂t

∫
dV ρ = −

∫
dV ∂i(ρvi). (9.20)

We can take the time derivative inside the integral sign and rearrange to get∫
dV (∂t ρ + ∂i(ρvi)) = 0. (9.21)

This must be true for all arbitrary control volumes, which means that the integrand
must be zero, or

∂t ρ + ∂i(ρvi) = 0. (9.22)
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We define the operator

d
dt ≡ ∂t + vi∂i (9.23)

as the material derivative (also known as the substantial derivative), which is the
time derivative in the co-moving frame. The second term in its definition in effect
puts the observer moving along with this control volume in the material. Using the
definition of the material derivative and the chain rule, we have

dρ
dt = −ρ∂ivi. (9.24)

If ρ does not change, i.e., if the material is incompressible, the result is that the
velocity field is divergenceless (also called solenoidal), or

∂ivi = 0. (9.25)

This result is called the continuity equation.

9.4 Conservation of mass for each species

The same analysis applies for the conservation of mass for a given species k. We will
write k as a superscript with the understanding that repeated superscript indices are
not implicitly summed over (though wemay explicitly sum over them if we like). We
start with the analog of equation (9.17). We define ρk as the density of species k and
vk

i as the velocity of particles of type k, and we have∫
dV ∂t ρk = −

∫
dS ni(ρkvk

i ) + net production of k by chemical reaction.

(9.26)

I have added the production of k by chemical reaction (in words) to this equation,
since we need to consider this as well. We can write this using the stoichiometric
coefficients for chemical reaction l, νk

l , and their respective rates, rl.∫
dV ∂t ρk = −

∫
dS ni(ρkvk

i ) +

∫
dV Mk νk

l rl, (9.27)

where Mk is themolar mass of species k. The expressions for rl are typically given by
mass action expressions. Now, we can apply the divergence theorem and rearrange,
giving

∂t ρk = −∂i(ρkvk
i ) + Mk νk

l rl. (9.28)

51



To both sides of this equation, we add ∂i(ρkvi). The result is

∂t ρk + ∂i(ρkvi) =
dρk

dt + ρk∂ivi = −∂i(ρk(vk
i − vi)) + Mk νk

l rl. (9.29)

We define the diffusivemass flux by jk
i = ρk(vk

i −vi). This is the relativemovement
of species k compared to the center of mass, or barycentricmovement. So we have

dρk

dt = −ρk∂ivi − ∂ijk
i + Mk νk

l rl. (9.30)

We can re-write this equation in terms of the number density (the concentration)
of species k instead of the mass density. It is as simple as dividing the entire equation
by the molar mass.

dck

dt = −ck∂ivi −
1

Mk∂ijk
i + νk

l rl. (9.31)

It is common to also use the symbol jk
l for the diffusive particle flux, which is the

diffusivemass fluxdivided by themolarmass. This double notation can be confusing,
and we will avoid using it here.

Deriving an expression for the diffusive particle flux is nontrivial8, and we will
not do it here. We will take as given Fick’s first law, which states that

jk
i

Mk = −Dk∂ick, (9.32)

where Dk is the (strictly positive) diffusion coefficient of species k. Using this ex-
pression, we arrive at the reaction-diffusion-advection equation,

∂tck = −∂i(ckvi) + ∂i(Dk∂ick) + νk
l rl. (9.33)

The diffusion coefficient is often constant (though not always, especially in develop-
mental systems when phosphorylation states can alter the effective diffusion coeffi-
cient), so we get

∂tck = −∂i(ckvi) + Dk∂i∂ick + νk
l rl. (9.34)

The first term on the right hand side describes the change in concentration as a result
of being embedded in a moving material (advection). The second term describes
diffusion, and the last describes chemical reaction. These are the same equations that
we encountered in studying Turing patterns, sans the advective term. We see now
that the equation is derived simply by accounting for all of the mass in an arbitrary
volume element.

8It involves invoking the Second Law of Thermodynamics and some symmetry arguments. Im-
portantly, it requires little else, and arrives naturally without substantial assumptions.
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9.5 Shoring up when we can use continua

From the above, we can see what the criteria are for using continuum mechanics.
We have to be able to define volume elements large enough to contain enough par-
ticles such that each volume element has a well defined average and does not expe-
rience large fluctuations. The volume elements must be small enough that we can
define spatial derivatives of these average quantities. So, we need to have a system
big enough and full enough to contain many sufficiently big volume elements. This
seems restrictive, but in practice, continuum mechanics has been very successful
even in describing phenomena on very small length scales.

9.6 General conservation law

Instead of counting mass, let’s count any other conserved quantity that is a property
of the material; let’s call it ξ . If ji is the flux of ξ out of the volume element Then,
we have

∂t

∫
dV ξ = −

∫
dS ni ji, (9.35)

or, upon applying the divergence theorem and considering that the volume element
is arbitrary,

∂t ξ = −∂i ji. (9.36)

This tells us that the local time rate of change of a conserved quantity is given by the
divergence of a flux, an important general result.
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10 Continuum mechanics II: conservation of momentum

10.1 Conservation of linear momentum

Recall the general conservation law,

∂t ξ = −∂i j i. (10.1)

Let’s take ξ = ρvi, the linear momentum density. The total linear momentum of a
volume element is

∫
dV ρvi, so taking ξ = ρvi means that we are describing a con-

servation law for linear momentum. In this case, ∂t(ρvi) is a rank one tensor, so the
flux must be a rank two tensor. We will denote this flux as Σij, the total momentum
flux tensor. It is the flux of momentum density coming out of a volume element.
The statement of conservation of linear momentum, called the equation of motion,
is

∂t ρvi = −∂j Σij. (10.2)

We can split the total momentum flux tensor into two pieces. First, we have the
momentum flux due to material flowing in and out of the volume element. This is
ρvivj. The second part of the total momentum flux is all the other stuff, which we
will denote by σij. This object, σij, is called the stress tensor.

Σij = ρvivj + σij. (10.3)

To be clear, the stress tensor contains all stresses suffered by a material, such as
pressure and shear stresses. The other part of the total momentum flux tensor is
momentum density that is transported by virtue of material moving in and out of the
volume element. Using this split total momentum tensor, we have

∂t ρvi = −∂j ρvivj − ∂j σij. (10.4)

Applying the chain rule to terms on both sides of this equation gives

ρ∂tvi + vi∂t ρ = −ρvj∂jvi − vi∂j ρvj − ∂j σij. (10.5)

Rearranging, we get

ρ (∂t + vj∂j)vi = −vi[∂t ρ + ∂j ρvj]− ∂j σij. (10.6)

The parenthetical termon the left hand side is thematerial derivative. The bracketed
term is zero by conservation of mass, cf. equation (9.22). Thus, we arrive at our
statement of conservation of linear momentum.

ρ dvi

dt = −∂j σij. (10.7)
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10.2 Physical interpretation of the stress tensor

The stress tensor describes forces resulting from relative motion of a material. It has
units of force per area, or momentum flux. To see this, note that momentum has
dimension of ML/T. A flux introduces dimension of 1/L2T. Putting it together, the
stress has units of M/LT2, or force per area.

Extensile stress, σxx

Shear stress, σxy

x

y

Figure 14: Depiction of extensile and shear stresses on a block of material.

To understand how it describes forces due to relative motion consider grabbing
a piece of material and stretching it, as in the top illustration in Fig. 14. The part of
the material to the left moves leftward and that to the right moves rightward. The
component of the stress tensor describing resistance to this mode of relative motion
is σxx.

Now consider a shearing motion, as in the bottom illustration in Fig. 14. The
component of the stress tensor describing resistance to this mode of relative motion
is σ xy.

10.3 Constitutive relations

This is all fine and good, but can we write a mathematical expression for σij so that
we can put it to use? An expression for the stress tensor is called a constitutive rela-
tion. A constitutive relation relates physical quantities in amaterial-specificway. We
already saw a constitutive relation in the last lecture, Fick’s first law, which relates
diffusive mass flux to a concentration gradient, jk

i = −MkDk∂ick.

We stated Fick’s first law without proof, and the derivations constitutive rela-
tions are often nontrivial. We will explore constitutive relations in the this and the
next lecture and explore their meanings.
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10.4 Constitutive relation for a homogeneous elastic solid

We first consider a homogeneous elastic solid. The stress tensor is given in terms
in the strain tensor, which we will first characterize. Throughout the following dis-
cussion, bear in mind that we are talking about a homogeneous solid. This means that
deforming the solid in the x-direction should be the same as deforming it in the y-
direction.

10.4.1 Elastic strain tensor

We define by xi the position of a piece of the solid in space. We then deform the
solid such that that same piece is now at position x′i. We define the displacement,
ui = x′i −xi. If ui is constant across the solid, the solid is not being deformed; rather,
it is being translated in the direction of ui. However, if ui varies in space, we do have
a deformation. So, the quantity ∂iuj reflects local deformations in the solid.

To investigate themagnitude of deformations, we consider the differential squared
distance between neighboring points in the solid.

dℓ2 = dxi dxi. (10.8)

If we have a deformation, this distance changes by

dℓ′2 = dx′i dx′i. (10.9)

To get an expression for dx′i, we can use the chain rule.

d(x′i − xi) = dui = (∂jui)dxj, (10.10)

which gives

dx′i = dxi + (∂jui)dxj. (10.11)

Then, we have

dℓ′2 = (dxi + (∂jui)dxj) (dxi + (∂kui)dxk)

= dxi dxi + (∂jui)dxj dxi + (∂kui)dxk dxi + (∂jui)(∂kui)dxj dxk

= dℓ2 + [∂iuj + ∂jui + (∂iuk)(∂juk)] dxi dxj, (10.12)

where in the last line we have renamed indices to collect terms multiplying dxi dxj.
We can write this down as

dℓ′2 − dℓ2 = 2εij dxi dxj, (10.13)
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where we have defined the strain tensor9 as

εij =
1
2
(∂iuj + ∂jui + (∂iuk)(∂juk)) . (10.14)

Because it goes as the square of the differential displacement, the last term in the
strain tensor is small for small displacements. So we have, to linear order in ∂iui,

εij ≈
1
2
(∂iuj + ∂jui). (10.15)

10.4.2 Elastic stress tensor

We have established that the strain describes deformations of the solid. We can de-
rive a relationship between the stress tensor, which describes the forces necessary
to achieve the deformations, and the strain tensor using thermodynamic arguments.
Instead, we will just start with Hooke’s law, which is valid for small deformations.
As Hooke said, “ut tensio sic vis,” or the force is proportional to extension. Because
the stress tensor is a rank 2 tensor, as is the strain tensor, to write a linear relationship
between the two, most generally, we need a rank 4 tensor.

σ ij = Cijkl εkl. (10.16)

There are 34 = 81 entries in the tensor Cijkl. This looks really intimidating, but
by symmetry arguments, we can show that the entries are not all independent. For
example, because the strain tensor εij is symmetric, εij = εji. The stress tensor
must also show this symmetry, so therefore so must Cijkl. This implies that Cijkl =
Cjikl = Cijlk. We will not go through all of the symmetry arguments here, but in the
end, we find that there are only two independent parameters. Generally, it can be
shown that a linear relationship between two rank 2 symmetric tensors that remains
invariant under change of coordinates has the form

σ ij = λ εkk δij + 2μ εij, (10.17)

where the constants λ and μ are called the Lamé coefficients. This gives us our
constitutive relation for an elastic solid.

As is commonly done, is is convenient towrite theLamé coefficients in a different
form. We define

λ =
Eν

(1 + ν )(1 − 2ν ) , (10.18)

μ =
E

2(1 + ν ) , (10.19)

9Though they have similar symbols, this strain tensor εij is not to be confusedwith the Levi-Civita
symbol εijk.
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where E is called the Young’s modulus and ν is the Poisson ratio.10 The resulting
expression for the stress tensor is

σij =
E

1 + ν

(
εij +

ν
1 − 2ν εkk δij

)
, (10.20)

Wewill not derive it here, but the second law of thermodynamics dictates thatE ≥ 0
and −1 ≤ ν ≤ 1/2. Thus, the stress associated with an elastic deformation is of
order Eε .

10.4.3 Equation of motion for an elastic solid

Now that we have our constitutive relation, we canwrite the equation ofmotion from
the statement of conservation of linear momentum. The local velocity, vi, is related
to the displacement as vi = ∂tui. Thus, we can write

ρ dvi

dt = ρ
(
∂2

t ui + (∂tuj)∂j∂tui
)
= −∂j σij, (10.21)

where the t’s denote time derivatives and are not summed over. Evidently, this is
a wave equation in the displacement. The dynamics describe elastic waves through
the solid. We know these waves as sound. The dynamics are usually very fast com-
pared to biological time scales of interest, so we usually neglect the left hand side of
the equation of motion. Typically with elastic solids, we will study only statics, as
governed by the constitutive relation itself, in this case, equation (10.20).

10.5 Constitutive relation for an isotropic viscous ƶuid

If we look at the expression for the elastic stress, we see that it scales like the displace-
ment, σ ∼ Eε . For a fluid, we would not expect this to be the case. If we displace
a fluid and then let it rest, we do not have to exert any more force to maintain the
displacement. Instead, we expect that the stress we need to exert on a fluid to move
it will be related to the rate at which we make deformations,

∂t∂iuj = ∂i∂tuj = ∂ivj, (10.22)

where vj = ∂tuj is the velocity at which the material is moving. In other words, if we
want to move a fluid more rapidly, it will require more force than to move it slowly.
The actual magnitude of the displacement will not matter; only the rate at which we
make displacements. The velocity gradient tensor can be written as

∂ivj =
1
2
(∂ivj + ∂jvi) +

1
2
(∂ivj − ∂jvi) = vij + ωij. (10.23)

10There should be no confusion between the Poisson ration ν and the stoichiometric coefficient
for species k in chemical reaction l, νk

rl.
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Here, we have defined

vij ≡
1
2
(∂ivj + ∂jvi) (10.24)

as the symmetric part of the velocity gradient tensor and

ωij ≡
1
2
(∂ivj − ∂jvi) (10.25)

as the antisymmetric part. Due to the symmetry of an isotropic fluid and conser-
vation of angular momentum (which we will not formally consider here), the stress
tensor must be symmetric, which means that ωij does not contribute to it.

We might also expect the stress to include the hydrostatic pressure, p. After all,
pumps move fluids around by exerting pressure on them. So, we additionally have a
−pδij term in the stress tensor. For an isotropic viscous fluid, then, we have

σij = −pδij + Cijklvkl. (10.26)

Again, we use the fact that a linear relationship between two rank 2 symmetric ten-
sors that remains invariant under change of coordinates can be written with Lamé
coefficients.

σ ij = −pδij + λvkk δij + 2μvij. (10.27)

We will define η and ηv such that μ = η and λ = (ηv − 2η )/3. Then, we have

σ ij = −pδij + 2η
(

vij −
vkk

3
δij

)
+

ηv
3

vkk δij. (10.28)

The quantity η is called the viscosity, or shear viscosity, and ηv is called the bulk
viscosity. It is clear that ηv determines the contribution of isotropic compression
to the stress. For am incompressible fluid, the continuity equation (9.25) gives that
vkk = ∂kvk = 0, so the stress tensor is

σ ij = −pδij + 2ηvij = −pδij + η (∂ivj + ∂jvi). (10.29)

10.6 Equation of motion for an incompressible isotropic viscous ƶuid

Now thatwehave the constitutive relation, we canwrite down the equation ofmotion
for an incompressible isotropic viscous fluid. This is the statement of conservation
of linear momentum.

dvi

dt = −∂j σij = ∂ip − η∂j∂jvi, (10.30)
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This equation, together with the continuity equation, ∂ivi = 0, are known as the
Navier-Stokes equations. We can nondimensionalize this equation, choosing x =
ℓx̃, t = τ t̃, vi = Uṽi, and p = p̃ ηU/ℓ. Here, ℓ and τ are respectively length and
time scales of interest, and U is the characteristic velocity. The resulting equation is

ρℓ2

ητ ∂tṽi +
ρUℓ

η ṽj∂jṽj = ∂ip̃ − ∂j∂jṽi, (10.31)

where the derivatives are now with respect to dimensionless variables. We can col-
lect the constants to define dimensionless parameters, theReynolds number, Re =
ρUℓ/η , and the Strouhal number, Sr = (ℓ/U)/τ .

Re (Sr ∂t + ∂jṽj) ṽi = ∂ip̃ − ∂j∂jṽi. (10.32)

The Reynolds number is the ratio of the inertial energy, ρU2ℓ3, to the energy loss
due to viscous dissipation, ηUℓ2. The Strouhal number is the ratio of the advective
time scale, ℓ/U to any other pertinent time scale of interest, τ . If Re ≪ 1 and
Re Sr ≪ 1, then the left hand side of the equation ofmotion is negligible compared to
each term in the right hand side. In cell and developmental biology, this is generally
the case. To satisfy us that this is indeed the case, we can estimate the Reynolds
number for processes in a developing embryo. The density of our material is close
to that of water, or 103 kg/m3. The smallest viscosity is that of water, which is about
10−3 kg-m/s. The longest length scale we generally consider in early embryos is
about 1 mm = 10−3 m. The fastest speeds could conceivably be that of the fastest
motor proteins, about 100 µm/s = 10−4 µm/s. Putting this together gives a Reynolds
number of Re = 0.1. We have intentionally vastly overestimated this, since most
fluid-like embryonicmovementsmuchmore slowly, over shorter distances, and with
much higher viscosity. So, we are generally justified in neglecting the left hand side
of the equation of motion, and we have

∂j σ ij = 0. (10.33)

We will talk in more depth about dynamics of isotropic incompressible viscous
fluids at lowReynolds numberwhenwe study theHe, at al. paper. In a future lecture,
we will look at complex fluid (those that are not isotropic, such as an actin cortex,
which is comprised of filaments) and active, meaning that the material can consume
energy (for example via ATP hydrolysis by motor proteins), which will use in the
papers we read about polarizing the one-cell C. elegans embryo.
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11 Viscous ƶows in development

In theHe, et al. paper, wewill study viscous flows in the context of apical constriction
in ventral furrow formation in Drosophila development. He and coworkers do not
consider the contractingmaterial, but rather the passive components beneath. These
can be modeled as a viscous fluid.

11.1 Dynamical equations of Stokes ƶow

An isotropic viscous fluid has a stress tensor given by

σij = −pδij + 2ηvij = −pδij + η (∂ivj + ∂jvi). (11.1)

The equation of motion, as we have seen before is

ρ dvi

dt = ∂j σij, (11.2)

where d/dt denotes the material derivative we have seen in previous lectures. In
most developmental contexts, the Reynolds number is very small, so the left hand
side of the equation of motion is effectively zero. The resulting equation of motion
is then

∂j σij = −∂ip + η∂j∂jvi = 0. (11.3)

We have used the continuity equation, ∂ivi = 0, in writing this, and have made the
assumption that the viscosity η is constant. Flow described by these equations is
called Stokes flow, named after George Stokes, who was a pioneer in the study of
low Reynolds number fluid dynamics.

11.2 Qualitative features of Stokes ƶow

Now that we have the equations governing Stokes flow, we canmake some very pow-
erful qualitative statements about Stokes flow.

1. The Stokes equations are linear. Therefore, for a given set of boundary con-
ditions, the velocity field is unique. This is not true for flows with Re > 0.

2. There is no time present in the Stokes equations, except possibly for time-
dependent boundary conditions. This means that the flow field is set instanta-
neously by the boundary conditions. Knowledge of the flow at any other time
is unnecessary.
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3. Because the Stokes equations are linear, the dynamics are reversible. This
means that if vi is a solution of the Stokes equations, then so is−vi if the sign
of the pressure field is also flipped.

−∂i(−p) + η∂j∂j(−vi) = ∂ip − η∂j∂jvi = 0 = − (−∂ip + η∂j∂jvi) .
(11.4)

This also means that the dynamics are reversible in time. That is, if the time-
dependent boundary conditions were run in reverse, the fluid dynamics would
be exactly reversed as well.

4. Hydrodynamic forces are long-ranged. To see this, consider an object moving
through a fluid. The fluid around the objectmoves, and as a result, momentum
is carried through the fluid. The momentum flux is given by the stress tensor.
So,

momentum flux ≡ jmom ∼ ∂jvi ∼ ∂rv, (11.5)

where r is the radial distance from the translating object. We will assume a
power law dependence of the momentum flux on r,

jmom ∼ r−α−1. (11.6)

The total momentum flux through any spherical shell of radius R must be the
same as any other spherical shell. The total momentum flux through a spher-
ical shell scales like jmomR2 ∼ R−α+1. For this to be the same for all shells, we
must have α = 1. Thus,

∂rv ∼ r−2, (11.7)

such that v ∼ r−1. So, the velocity field decays away like 1/r, in contrast to
high Reynolds number where it decays away like 1/r3. In two dimensions, the
decay is even slower, v ∼ ln r. So, hydrodynamic forces are felt over large
distances.

11.3 Green’s functions for Stokes ƶow

Consider a point force Fi in a fluid. In this case, the governing equations are

− ∂ip + η∂j∂jvi = −Fi δ (xi), (11.8)

∂ivi = 0. (11.9)

The velocity and pressure fields that solve these equations are known as theGreen’s
functions. We could solve for the Green’s functions, but it is perhaps easier to “in-
vent” the solution and then verify that it works. The result is

vi =
1

8π η FjGij, (11.10)
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p =
1

8π η FiPi, (11.11)

where

Gij =
δij

r +
xixj

r3 , (11.12)

Pi = 2η xi

r3 + P∞
i , (11.13)

where r =
√xixi and FiP∞

i is the pressure very far away from the point source.
From this expression, we see the 1/r dependence of the velocity field. Here, Gij is
known as the Oseen tensor, after the Swedish physicist Carl Wilhelm Oseen. The
quantity vi, as defined above, is the Green’s function for the Stokes equations, is
called a Stokeslet. The stress field from the point source is Fk Σijk, where

Σijk = − 3
4π

xixjxk

r5 . (11.14)

In two dimensions, velocity field is instead

vi =
1

4π η FjGij, (11.15)

Gij = ln rδ ij −
xixj

r2 , (11.16)

so the decay of the velocity field is even slower than in three dimensions.

11.4 Solutions of Stokes equations using Green’s functions

He, et al. solved the Stokes equations by choosing a distribution and strength of
point forces such that the fluid flow velocity matched that what was measured at
he apical surface. In other words, the apical surface is contracting and constitutes
a moving boundary. The boundary conditions were approximated by placing point
sources that gave the right result at the boundary. Because the solution to the Stokes
equations is unique, this gives the correct fluid flow. Note, however, that this crude
method does not give the correct stresses. Getting those requiresmore carefulmeth-
ods like boundary integral methods, which are beyond the scope of our discussion
here.
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12 Continuum mechanics III: active complex ƶuids

Wehave conservation laws formass and linearmomentum. In both cases, we showed
that the conservation law is of the same form. The time rate of change of a quantity is
given by the divergence of a flux, plus some generation term for nonconserved quan-
tities. When written in the comoving frame (that is, using the material derivative),
we can define the flux tensor we need to specify. For conservation of linear momen-
tum, this flux tensor is the stress tensor. The specification of the stress tensor is
called a constitutive relation, and we have reasoned our way to them thus far (really,
without proof ). Now, we will move on to active fluids, which are a central topic in
the papers we will read and discuss on the polarization of the C. elegans zygote.

12.1 Isotropic active viscous ƶuid

Our immediate goal is to model the acto-myosin cortex of the developing C. elegans
embryo. The cortex is an example of an active fluid, in that it can exert stresses upon
itself. This is achieved through the activity of motor proteins that cross-link actin fil-
aments. Working together, the motors serve to compress the actin meshwork. We
therefore add an active stress to the stress tensor. We will define the magnitude of
this active stress to be σa. In general, this can be a function of myosin motor concen-
tration or the concentration of any other factor that regulates actin or motor activity.
We stipulate however that it is not a function of fluid velocity. So, the active stress
in an isotropic fluid is a scalar quantity depending only on other scalar quantities. It
therefore appears in the stress tensormust like the pressure, as σa δ ij. In this section,
we will show that such a fluid cannot have any interesting dynamics beyond a passive
fluid to motivate the need for the broken symmetry of a nematic active fluid.

Augmenting the stress tensor with the active stress, we have

σ ij = −pδ ij + 2ηvij + σa δ ij. (12.1)

As a reminder, vij = (∂ivj + ∂jvi)/2 is the symmetric part of the velocity gradient
tensor. Apparently, from the definition of the stress tensor, the active stress is in-
distinguishable from the hydrostatic pressure, since they always appear together as
a sum. Let us investigate this further by writing the equation of motion with the new
stress tensor (again, assuming the dynamics are intertialess).

η∂j∂jvi − ∂i(p − σa) = 0. (12.2)

As a step in exposing the active stress independence of the dynamics, we take the
curl of both sides of the equation.

ε kli∂k (η∂j∂jvi − ∂i(p − σa)) = η∂j∂j ωi = 0, (12.3)
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where we have defined the curl of the velocity field as the vorticity, ωi (not to be
confused the the antisymmetric part of the velocity gradient tensor, ωij). This tells
us that the dynamics of the vorticity are given by

∂j∂j ωi = 0, (12.4)

meaning that the motion is entirely determined by the boundary conditions.

Now, we will take the divergence of both sides of the equation of motion.

∂i (η∂j∂jvi − ∂i(p − σa)) = η∂j∂j[∂ivi]− ∂i∂i(p − σa) = 0. (12.5)

The bracketed term is zero for an incompressible fluid by the continuity equation.
Thus, the difference between the pressure and active stress are set by

∂i∂i(p − σa) = 0. (12.6)

This equation must hold regardless of what the velocity field is to enforce incom-
pressibility. Therefore, the quantity p− σa is set entirely by incomressibility and the
active stress can have no effect on the fluid dynamics that is distinguishable from the
hydrostatic pressure. So, we cannot really model the cortex as an active incompress-
ible isotropic fluid because this is indistinguishable from a non-active fluid.

12.2 Active nematic viscous ƶuid

The cortex consists of crosslinked filaments of actin. It therefore stands to reason
that it is not isotropic because it consists of these stick like structures. We can define
a local vector, called a director that describes the average orientation of the filaments
in a small volume element. We will call this vector ni and specify that it is a unit vec-
tor (nini = 1). We could define the local order in terms of ni itself, but insteadwewill
consider the case where the sign of the direction of the director is immaterial. Phys-
ically, this means that the “sticks” in the fluid do not have arrowheads; pointing in
the positive x direction is the same as pointing in the negative x direction. In this
case, we need to construct a nematic order parameter that respects this nondirec-
tionality. As shown by deGennes in the study of liquid crystals, this order parameter
is a rank 2 tensor that can be constructed from the director as

Qij = S
(

ninj −
1
3

δ ij

)
. (12.7)

Here, S is the magnitude of the local order. The nematic order parameter is sym-
metric and traceless.

Now thatwe have this order parameter that describes the fluid, we no longer have
the isotropy we enjoyed when writing down the stress tensor for a simple fluid. We
need to add an extra term to the stress tensor that takes into account nematic order.

σ ij = −pδ ij + 2ηvij + σnematic
ij . (12.8)
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Wewill assume that we are above a critical temperature such that the filaments tend
to be disordered. In other words, in a relaxed, equilibrium state, the order parameter
tends toward zero. We might then write the nematic stress as a Taylor series about
the Qij = 0 state, noting that the first order term should vanish because the nematic
stress is minimal with Qij = 0.

σnematic
ij = AijklQkl + Bijklmn∂k∂lQmn. (12.9)

From symmetry arguments and other approximations we will not go into here, the
higher order tensors in the expansion can be reduced to scalars. As is traditionally
done, we can define constants β1, χ , and L and write the passive nematic stress as

σnematic
ij = β1(χ − L∂k∂k)Qij. (12.10)

Here, χ is referred to as an inverse susceptibility and L is related to the Frank elastic
constants from the theory of liquid crystals. The coefficient β1 is an Onsager coeffi-
cient. We will not go into the details of these terms here (and this hand-wavy Taylor
series expansion is not a careful derivation at all), but we write it this way because
this is how it appears in the literature. So, the stress tensor for a passive nematic
viscous fluid is

σij = −pδij + 2ηvij + β1(χ − L∂k∂k)Qij. (12.11)

Next, we will write the active stress in terms of the order parameter. We can
write it to linear order as a Taylor expansion.

σactive = σ 0
a δij + σaQij. (12.12)

The first term describes the isotropic contraction due to active stresses. This is the
same term as in the isotropic case and is indistinguishable from the pressure. We
will therefore absorb it into the pressure and define Π = p − σ 0

a . The last term is
directional stress exerted along the nematic order. So, our stress tensor for an active
nematic fluid is

σ ij = −Π δ ij + 2ηvij + β1(χ − L∂k∂k)Qij + σaQij. (12.13)

The equation of motion is then, considering again the interialess limit for an incom-
pressible fluid,

∂j σij = 0 = −∂i Π + η∂j∂jvi + β1(χ − L∂k∂k)∂jQij + ∂j(σaQij). (12.14)

12.3 Two-and-one-dimemsional active nematic ƶuid

In the homework, you will derive the equation of motion for an active nematic fluid
that is confined to two dimensions. You will then make some assumptions about the
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symmetry of the flow to reduce the result to a one-dimensional equation. This is the
equation used in the Mayer, et al. and the Gross, et al. papers to describe the cortex
dynamics. Specifically, you will derive that

−η∂2
x vx + γvx = ∂x σa, (12.15)

where γ is a friction coefficient. This equation means that gradients in active stress
drive cortical flow against viscous dissipation and frictional losses.

Note that Qij does not appear in this equation. Nonetheless, to derive the equa-
tion ofmotion for the cortex, we do need to explicitly take into account nematic order.
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13 Viscoelasticity and laser ablation

13.1 Linear viscoelasticity

We have so far considered the constitutive relations for an elastic solid and a viscous
fluid (including active nematic viscous fluids). The actomyosin cortex behaves both
elastically and viscously. For long time scales, it can flow, like a fluid. But if the
cortex is rapidly stressed, it behaves like an elastic solid. After all, it is what gives
the cell its shape. Further, as described in the Mayer, et al., paper, the actomyosin
cortex responds elastically when it is cut while under tension. So, it has both elastic
and viscous properties. What kind of constitutive relation describes this scenario of
a viscoelastic material?

In many cases, it is not possible to write down a constitutive relation for a vis-
coelastic material. Researchers instead rely on experimental characterization of the
material, such as a cell and its cortex, as it experiences stress.

Nonetheless, we can write down a linear theory that will (hopefully) provide
some insight and predictive power. Let us compare for a moment the constitutive
relations of an elastic and a viscous active nematic material. For simplicity, we will
assume an incompressible material with a Poisson ratio of zero. For convenience,
we will use the shear modulus, μ , which you can recall from equation (10.17) is the
second Lamé coefficient. It is related to the Young’s modulus by μ = E/2(1 + ν ).
In the case of zero Poisson ratio, this is μ = E/2.

elastic: σij + Π δij − β1(χ − L∂k∂k)Qij − σaQij = 2μ εij, (13.1)

viscous: σij + Π δ ij − β1(χ − L∂k∂k)Qij − σaQij = 2ηvij. (13.2)

Recall that

∂t εij =
1
2
∂t(∂iuj + ∂jui) =

1
2
(∂i∂tuj + ∂j∂tui) =

1
2
(∂ivj + ∂jvi) = vij. (13.3)

So, if we differentiate the constitutive relation for the elastic material with respect to
time, we get

∂t (σij + Π δij − β1(χ − L∂k∂k)Qij − σaQij) = 2μvij, (13.4)

which we can re-write to give

τM∂t (σij + Π δ ij − β1(χ − L∂k∂k)Qij − σaQij) = 2ηvij. (13.5)

Here, τM = η/μ is theMaxwell time, which describes the time scale for relaxation
of elastic stresses. We might, then interpolate between the two cases of elastic and
viscous materials by adding the constitutive relations together.

(1 + τM∂t) [σij + Π δ ij − β1(χ − L∂k∂k)Qij − σaQij] = 2ηvij. (13.6)
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For time scales much less than τM, the material behaves elastically, but for time
scales much longer than τM, the material behaves viscously. This can be seen if we
nondimensionalize time by the time scale of interest, τ . Then, the dimensionless
operator at the front of equation (13.6) is

1 +
τM

τ ∂̃t. (13.7)

If τ ≫ τM, the second term is small and we get the constitutive relation for a viscous
fluid. If τ ≪ τM, the second term dominates, and we get the constitute relation for
an elastic solid.

Equation (13.6) is actually not quite correct because it is not frame invariant. To
see this, let’s say that we did identical experiments on this viscoelastic material, one
in a laboratory, and one in a train car moving at constant velocity v0

i . Writing the
stress tensor explicitly as a function of position and time, wehave, for the timederiva-
tive of the stress tensor in the second experiment using the chain rule,

∂t σij(xi + v0
kt, t) = ∂t σij + v0

k∂k σij. (13.8)

Since the equation in this experiment has terms not present in the experiment done
in the stationary lab, the governing equations are not frame invariant, which violates
Gallilean relativity. Instead, we should use the convected corotational derivative,
which preserves frame invariance, both for linear and rotational motion. The con-
vected corotational derivative of a second rank tensor is defined as

DAij

Dt = ∂tAij + vk∂kAij + ω ikAkj + ω jkAki. (13.9)

As a reminder, ω ij = (∂ivj−∂jvi)/2 is the antisymmetric part of the velocity gradient
tensor. The convected corotational derivative is like the material derivative in that
it sets the frame as the co-moving, corotational frame. So, for an active nematic
viscoelastic fluid, which is solid-like at short time scales and viscous-like at long time
scales, a linear viscoelastic model gives a constitutive relation of(

1 + τM
D
Dt

)
[σij + Π δ ij − β1(χ − L∂k∂k)Qij − σaQij] = 2ηvij. (13.10)

We will make use of this in interpreting the laser ablation experiments in the Mayer,
et al. paper.

13.2 Analysis of cortical laser ablation experiments

In the Mayer, et al. paper, the authors used cortical laser ablation (COLA) to cut
a line in the cortex of the C. elegans embryo and observe the recoil. By comparing
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the initial velocity of the recoil of two different experiments, they could compare the
total tension present in the cortex immediately before ablation. Why is this the case?

To address this question, we consider the cortex as an active nematic elastic ma-
terial. In the elastic limit, we use the constitutive relation (13.1),

σij = −Π δ ij + β1(χ − L∂k∂k)Qij + σaQij + 2μ εij. (13.11)

We assume that the nematic order is constant in space, so ∂k∂kQij = 0.

We assume the ablation line is along the y-direction so that the response is pri-
marily along the x-direction. It is convenient, then, to write the xx-component of the
constitutive relation.

σxx = −Π + (β1 χ + σa)Qxx + 2μ εxx. (13.12)

Note that in assuming the Poisson ratio is zero, motions in the y and z directions do
not enter into the dynamics. If we had a nonzero Poisson ratio, we could still neglect
these dynamics since εyy, εzz ≪ εxx because the recoil is primarily in the x-direction.

Nowwe consider the geometry. The ablation line is at position x = 0. We define
by xc to be the position of the edge of the cortex at the ablation line. Thismoves as the
cortex recoils from the ablation. For the purposes of this discussion, we will observe
the right side of the ablation site. Now, εxx = ∂xux, where ux is the x-component of
the displacement of the elements of the cortex from their equilibrium positions. If
the deformation is distributed uniformly across the contracting cortex, the strain is
εxx = ∂xux ≈ (xc − x0)/(ℓ − xc). Here, the numerator is the displacement of the
cortex from its equilibrium position x0, and the denominator is the total length of the
cortex. We have introduced ℓ as the total extent of the embryo. Prior to ablation,
xc = 0, so the initial strain is ε 0

xx = −x0/ℓ. For the stress, we have

σxx = −Π + (β1 χ + σa)Qxx +
2μ

ℓ− xc
(xc − x0). (13.13)

As the cortex initial retracts from the ablation, ℓ ≫ xc, so the stress can be approxi-
mated as

σxx = −Π + (β1 χ + σa)Qxx +
2μ
ℓ
(xc − x0) = kxc + σ0

xx, (13.14)

where we have defined a spring constant

k = 2μ/ℓ (13.15)

and

σ0
xx = −Π + (β1 χ + σa)Qxx − 2με0

xx (13.16)
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as the stress present in the cortex immediately prior to ablation. Already we see
that the active stress is not distinguishable in the dynamics, so we will not be able to
ascertain it in an ablation experiment.

The cortex does not instantaneously achieve its new equilibrium. This is because
there is dissipation due to friction with the surrounding membrane and cytoplasm.
The above equation constitutes a force balance, and we need to also include the fric-
tional force. This will be proportional to the velocity of the recoil, or ∂txc. Thus, we
get

σxx = kxc + σ0
xx + ζ∂txc, (13.17)

where ζ is the friction coefficient. With this force balance, we can study the dynam-
ics of the recoil from a COLA experiment. Upon ablation, the cortex can no longer
support stresses because the material has been destroyed, so σxx = 0. Thus, we take
σxx(t) = σ0

xx(1 − θ (t)), where θ (t) is a unit step function. Then, we are left with
the ODE

ζ∂txc = −kxc − σ0
xx + σ0

xx(1 − θ (t)) = −kxc − σ0
xx θ (t). (13.18)

If the ablation happens at time t = 0, then for t < 0, we have ∂txc = 0, since
xc(t = 0) = 0. For t > 0, we have

ζ∂txc = −kxc − σ0
xx. (13.19)

This first order linear differential equation is solved to give

xc(t) = c e−kt/ζ − σ0
xx
k (13.20)

where c is a constant of integration. We match to the initial condition that xc = 0 to
get that c = σ0

xx/k. Thus, we have

xc(t) =
σ0

xx
k (1 − e−kt/ζ ). (13.21)

The outward velocity of the bleeding edge of the ablation is then

v(t) = ∂txc =
σ0

xx
ζ e−kt/ζ . (13.22)

So, the initial outward velocity is σ0
xx/ζ , which is proportional to the total x-directional

stress that was present in the cortex immediately prior to ablation. We cannot assess
the value of σ0

xx because we do not know what ζ is. And, as mentioned before, we
also cannot tell how much of the total stress is due to active stress. However, we can
compare experiments to see the relative magnitudes of the total stress present in the
cortex. Further, if ζ is the same across experiments, which we would expect it to be,
the decay of the outward velocity is proportional to the stiffness (the Young’s mod-
ulus) of the cortex. We note, though, that this result is only valid for times shortly
after the ablation, because the cortex is viscoelastic, so it loses its elastic character
at longer times. Furthermore, the C. elegans cortex has a wound-healing response at
longer times as well.
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