BE 159 Winter 2021
Homework #2
Due at the start of class, January 27, 2021

Problem 2.1 (Means of scaling).

In the Stapornwongkul, et al., paper, the authors established the first synthetic /n
vivo morphogen gradient, a remarkable achievement. To be clear in our definitions,
by “gradient,” we mean a steady state spatial profile of morphogen concentrations,
where teh concentration is high in one region (near x = 0) and decay monotoni-
cally to be low in another region (near x = L, where L is the length of the tissue
over which the morphgen ggradient is formed). We further refine this definition to
mean a gradient in the gene-expression activity resulting from morphogen pattern-
ing. Importantly, Stapornwongkul and coworkers established some minimal com-
ponents necessary to set up the gradient that had similar properties and apparent
consequences of the Dpp gradient. To establish the gradient in the imaginal disc,
they needed the following components.

1. A diffusible morphogen that is produced at a source at x = 0.
2. A signaling receptor that can not hop from cell to cell.

3. A nonsignaling receptor that can hop from cell to cell.

The dynamics of these species are described in equations 53-57 of the supple-
mental material of the paper, and also equations 67-81 for a model in which two
signaling receptors are needed to affect gene expression.

As you can read in the supplement, the authors did a careful investigation of
these models for morphogen gradient establishment. In this problem, we will address
another important feature of morphogen gradients found in the living world, scaling.

Dobzhansky wrote an essay in 1973 entitled “Nothing in Biology Makes Sense
Except in the Light of Evolution.” In that spirit, we should consider what happens to
the shape of a morphogen gradient if the size of an organism grows. As an example,
consider the Bicoid gradient along the A-P axis in the early Drosophia embryo. In the
figure below, we see the gradients of Bicoid in three different species of fruit fly, each
with different embryo sizes. Each embryo shows an exponentially decaying gradient,
but the decay length for each is different. When all of the gradients are plotted instead
against the fractional distance along the A-P axis, they overlap. The decay length of
the gradients therefore scale with the size of the embryo. Stated mathematically,
this means that the observed length scale of the gradient A is a linear function of
the length of the tissue L. Another way of stating this is that the dynamics are only
dependent on X = x/L, at least over a substantial portion of the domain 0 < x < L.
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Figure 1: Fluorescence measurements of Bicoid gradients in three species of
fruit fly, each with different embryo size. A. Representative images. B. Top,
plots of measured gradients for each fly along the A-P axis. Bottom, the same
data plotted versus the fractional distance along the A-P axis. Figure taken

from Gregor, et al., Diffusion and scaling in early embryonic pattern formation,
PNAS, 2005.

If you think in the context of evolution, mechanisms that produce gradients that
scale might be more apt to survive selective pressure than those that do not. For
example, if the size of the imaginal wing disc grows, if the gradient does not grow
proportionately, then the wing will be disproportionate, possibly with more veins
positioned toward the anterior of the wing. In this problem, we will explore mech-
anisms for gradient formation and investigate under what regimes they may exhibit
scaling. (Note that in sections 4.3 and 4.4 of the lecture notes, we considered the
scaling of a classic model for the Bicoid morphogen gradient and found that it does
not scale.) We will consider one-dimensional models in all cases.

a) In 1970, Francis Crick proposed a simple mechanism for formation of a mor-
phogen gradient. He postulated that a source of morphogen might exist at
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position x = 0 and a sink at position x = L. To clarify what Crick means by
“sink,” I’1l use his own words.

“It is particularly easy to make a sink, if the sink holds the con-
centrations of the morphogen near zero, since then all that is re-
quired is an enzyme in the sink cells to destroy the morphogen very
rapidly, even at very low concentrations.”

i) Derive an expression for the steady state profile of morphogen for this
model.

i) Does the steady state distribution scale? If not, what can be modulated
to make it scale?

b) Suppose that all of the cells in the tissue being patterned produce a diffusible
mobilizing molecule (with concentration m(x, t) and diffusion coefficient D,,)
at constant rate ¢ (in units of concentration of unit time). The mobilizer affects
the diffusion coefficient of the morphogen as

D = Dof(m), (2.1)

where f(m) is some function of the mobilizer concentration, m. We can write
f(m) as a Taylor series to first order, f(m) ~ 1 + am. We assume that the
mobilizer has no effect on the reaction rates involving the morphogen. So, the
complete reaction-diffusion equation for the morphogen concentration c(x, )
is

oc 0

3= B (Do(l + am) %) + r(c). (2.2)

Suppose further that there are sinks for this mobilizer on each end of the tissue.
That is, m(x = 0) = m(x = L) = 0, where m(x) is the concentration of
mobilizer, as Crick proposed.

i) Solve for the mobilizer concentration, m(x).

ii) Provided r(c) does not have any strange L-dependence, does the mor-
phogen profile scale? More specifically, does it scale exactly, approxi-
mately, or not at all? Discuss in which limits scaling might be most ef-
fective.

¢) The concept of a globally secreted molecule that affects diffusion can be analo-
gously applied to one that affects the reaction rate. Imagine that the mobilizer
from part (b) is instead an inhibitor. That is, it inhibits the rate that reactions
involving the morphogen can occur, for example by transiently binding it to
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protect it. Approximating this slowdown as a first order inhibiting Hill func-
tion, the reaction-diffusion equation for the morphogen is

dc D o*c  r(c)

o Paogt 1o (2:3)

where h represents the concentration of the reaction inhibitor. If the inhibitor
has analogous dynamics as the mobilizer from part (b), does the steady state
profile scale? Discuss appropriate limits.

Does the model put forward in the paper exhibit scaling at steady state? They
used several model variants. You may consider the model given by equations
53-57 in the supplemental text under the approximation that the receptors are
far from saturated.

For 20 points extra credit, invent your own mechanism that can give approxi-
mate or exact scaling and demonstrate that it does.



