BE 159 Winter 2021

Homework \#7
Due by 5 pm, March 14, 2021
Please submit this homenork via email either as a text email or in PDF format to Justin and Jan. No other formats, including MS Word, will be accepted.

Problem 7.1 (Which papers? (5 pts)).
What paper that we read/discussed did you enjoy the most and/or get the most out of? You can also include papers from the presentations. Which did you enjoy the least? Please give reasons why you made the choices you did.

Problem 7.2 (What you walk away with (5 pts)).
What aspects of the course were most beneficial to you? Where there things that you think we could cut or change to make better use of time? In particular, I would like to improve the in class discussion of papers. Do you have any suggestions on how to better do that?

Problem 7.3 (Student presentations (5 pts)).
Did you find the student presentations informative to listen to? Were they useful to give? What suggestions, if any, do you have to the format of the talks?

Problem 7.4 (Guest lectures (5 pts)).
Did you find the guest lectures from Dr. Naganathan and Dr. Gross informative and/or enjoyable? Should we have guest lectures in the future (even if that means occasionally having class over Zoom even when we are back having in-person classes)?

Problem 7.5 (Continuum mechanics (5 pts)). In this class, you got a very brief overview of continuum mechanics. I'm concerned that because of the brevity that there might be some problems with students retaining that part of the material. Do you have suggestions about how we might deal with this? Fpr example, would you like less focus on signaling and more lecture time on continuum mechanics?

Problem 7.6 (Course structure (5 pts)).
Write a brief statement on your thoughts about the general way this course was structured. Did you like that it was literature-based with lecture material built around the background for each paper? Would you prefer a more traditional approach? What general suggestions for improvement do you have? (I know there might be some overlap between this and the previous problem.)

